Spaces:
Sleeping
Sleeping
EL GHAFRAOUI AYOUB
commited on
Commit
·
3a5be9b
1
Parent(s):
d4ce05f
- app/app.rar +0 -0
- app/controllers/__pycache__/f5_model.cpython-312.pyc +0 -0
- app/controllers/f5_model.py +94 -72
- app/main.py +75 -37
- app/templates/index.html +95 -70
app/app.rar
ADDED
Binary file (36.7 kB). View file
|
|
app/controllers/__pycache__/f5_model.cpython-312.pyc
CHANGED
Binary files a/app/controllers/__pycache__/f5_model.cpython-312.pyc and b/app/controllers/__pycache__/f5_model.cpython-312.pyc differ
|
|
app/controllers/f5_model.py
CHANGED
@@ -1,92 +1,114 @@
|
|
1 |
-
from typing import List, Optional
|
2 |
-
from pydantic import BaseModel
|
3 |
-
import torch
|
4 |
import logging
|
5 |
from transformers import pipeline
|
|
|
6 |
|
7 |
-
class
|
8 |
def __init__(self):
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
model_kwargs={"cache_dir": "./model_cache"} # Cache the model locally
|
22 |
-
)
|
23 |
-
logging.info(f"Model loaded successfully on {self.generator.device}")
|
24 |
-
except Exception as e:
|
25 |
-
logging.error(f"Error loading model: {str(e)}")
|
26 |
-
raise
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
logging.info(f"Generating response for prompt: {prompt[:100]}...")
|
31 |
-
|
32 |
-
# Enhanced generation parameters for better quality
|
33 |
-
response = self.generator(
|
34 |
-
prompt,
|
35 |
-
max_length=max_length,
|
36 |
-
min_length=1000, # Ensure minimum length
|
37 |
-
num_beams=5,
|
38 |
-
temperature=0.8,
|
39 |
-
top_p=0.95,
|
40 |
-
top_k=50,
|
41 |
-
repetition_penalty=1.2,
|
42 |
-
length_penalty=1.0,
|
43 |
-
do_sample=True,
|
44 |
-
num_return_sequences=1,
|
45 |
-
early_stopping=True
|
46 |
-
)[0]['generated_text']
|
47 |
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
|
|
58 |
|
59 |
except Exception as e:
|
60 |
-
|
61 |
raise
|
62 |
|
63 |
-
async def stream_response(self, prompt: str
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
try:
|
65 |
-
response
|
66 |
-
|
67 |
-
max_length=max_length,
|
68 |
-
min_length=1000,
|
69 |
-
num_beams=4,
|
70 |
-
temperature=0.8,
|
71 |
-
top_p=0.95,
|
72 |
-
do_sample=True,
|
73 |
-
return_full_text=False
|
74 |
-
)[0]['generated_text']
|
75 |
|
76 |
-
#
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
except Exception as e:
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
85 |
|
86 |
-
#
|
87 |
logging.basicConfig(
|
88 |
level=logging.INFO,
|
89 |
-
format='%(asctime)s - %(levelname)s - %(message)s'
|
|
|
|
|
|
|
|
|
90 |
)
|
91 |
|
92 |
-
f5_model =
|
|
|
|
|
|
|
|
|
|
1 |
import logging
|
2 |
from transformers import pipeline
|
3 |
+
import asyncio
|
4 |
|
5 |
+
class TextGenerationHandler:
|
6 |
def __init__(self):
|
7 |
+
# Initialize the text generation pipeline
|
8 |
+
self.pipe = pipeline(
|
9 |
+
"text2text-generation",
|
10 |
+
model="google/flan-t5-small",
|
11 |
+
max_length=2048, # Increase max length for longer responses
|
12 |
+
num_return_sequences=1
|
13 |
+
)
|
14 |
+
self.logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
async def generate_response(self, prompt: str) -> str:
|
17 |
+
"""
|
18 |
+
Generate a complete response using the T5 model pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
Args:
|
21 |
+
prompt (str): Input text to generate from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
Returns:
|
24 |
+
str: Generated text output
|
25 |
+
"""
|
26 |
+
try:
|
27 |
+
# Break down the generation into sections for better coherence
|
28 |
+
sections = [
|
29 |
+
"1. Executive Summary",
|
30 |
+
"2. Project Scope and Objectives",
|
31 |
+
"3. Architecture Overview",
|
32 |
+
"4. Component Design",
|
33 |
+
"5. Security and Compliance",
|
34 |
+
"6. Deployment Strategy",
|
35 |
+
"7. Team Requirements",
|
36 |
+
"8. Cost Estimates",
|
37 |
+
"9. Project Timeline"
|
38 |
+
]
|
39 |
|
40 |
+
complete_response = []
|
41 |
+
for section in sections:
|
42 |
+
section_prompt = f"{prompt}\nGenerate content for: {section}"
|
43 |
+
self.logger.info(f"Generating section: {section}")
|
44 |
+
self.logger.debug(f"Section prompt: {section_prompt}")
|
45 |
+
|
46 |
+
output = self.pipe(
|
47 |
+
section_prompt,
|
48 |
+
max_length=512,
|
49 |
+
do_sample=True,
|
50 |
+
temperature=0.7,
|
51 |
+
repetition_penalty=1.2,
|
52 |
+
no_repeat_ngram_size=3
|
53 |
+
)
|
54 |
+
|
55 |
+
section_text = output[0]['generated_text'].strip()
|
56 |
+
self.logger.info(f"Generated text for {section}:\n{section_text}\n")
|
57 |
+
|
58 |
+
complete_response.append(f"{section}\n{section_text}")
|
59 |
|
60 |
+
final_response = "\n\n".join(complete_response)
|
61 |
+
self.logger.info(f"Complete response:\n{final_response}")
|
62 |
+
return final_response
|
63 |
|
64 |
except Exception as e:
|
65 |
+
self.logger.error(f"Error generating text: {str(e)}", exc_info=True)
|
66 |
raise
|
67 |
|
68 |
+
async def stream_response(self, prompt: str):
|
69 |
+
"""
|
70 |
+
Stream the generated response section by section
|
71 |
+
|
72 |
+
Args:
|
73 |
+
prompt (str): Input text to generate from
|
74 |
+
|
75 |
+
Yields:
|
76 |
+
dict: Response chunks with type and content
|
77 |
+
"""
|
78 |
try:
|
79 |
+
# Generate complete response first
|
80 |
+
response = await self.generate_response(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
# Stream each section
|
83 |
+
accumulated_response = ""
|
84 |
+
sections = response.split('\n\n')
|
85 |
+
|
86 |
+
for section in sections:
|
87 |
+
accumulated_response += section + "\n\n"
|
88 |
+
self.logger.debug(f"Streaming section:\n{section}\n")
|
89 |
+
|
90 |
+
yield {
|
91 |
+
"type": "content",
|
92 |
+
"content": accumulated_response.strip()
|
93 |
+
}
|
94 |
+
await asyncio.sleep(0.1)
|
95 |
+
|
96 |
except Exception as e:
|
97 |
+
self.logger.error(f"Error in stream_response: {str(e)}", exc_info=True)
|
98 |
+
yield {
|
99 |
+
"type": "error",
|
100 |
+
"content": str(e)
|
101 |
+
}
|
102 |
|
103 |
+
# Configure logging
|
104 |
logging.basicConfig(
|
105 |
level=logging.INFO,
|
106 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
107 |
+
handlers=[
|
108 |
+
logging.StreamHandler(),
|
109 |
+
logging.FileHandler('f5_model.log')
|
110 |
+
]
|
111 |
)
|
112 |
|
113 |
+
f5_model = TextGenerationHandler()
|
114 |
+
|
app/main.py
CHANGED
@@ -3,10 +3,11 @@ from fastapi.responses import StreamingResponse
|
|
3 |
from fastapi.staticfiles import StaticFiles
|
4 |
from fastapi.templating import Jinja2Templates
|
5 |
from pydantic import BaseModel
|
6 |
-
from app.controllers.f5_model import
|
7 |
from typing import List, Optional
|
8 |
import logging
|
9 |
from app.helpers.plan_parser import parse_plan_sections
|
|
|
10 |
|
11 |
# Configure logging
|
12 |
logging.basicConfig(
|
@@ -23,7 +24,7 @@ app = FastAPI(title="F5 Model Test Application")
|
|
23 |
templates = Jinja2Templates(directory="app/templates")
|
24 |
|
25 |
# Initialize the F5 model
|
26 |
-
model_handler =
|
27 |
|
28 |
class ChatMessage(BaseModel):
|
29 |
role: str
|
@@ -190,57 +191,94 @@ async def generate_plan(request: ProjectPlanRequest):
|
|
190 |
try:
|
191 |
logger.info(f"Plan generation request received for project: {request.project_title}")
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
|
200 |
-
|
|
|
201 |
|
202 |
1. Executive Summary
|
203 |
-
Brief overview of the
|
|
|
|
|
|
|
204 |
|
205 |
2. Project Scope and Objectives
|
206 |
-
Core
|
|
|
|
|
|
|
|
|
|
|
207 |
|
208 |
3. Architecture Overview
|
209 |
-
{request.platform}
|
|
|
|
|
|
|
|
|
|
|
210 |
|
211 |
4. Component Design
|
212 |
-
|
|
|
|
|
|
|
213 |
|
214 |
5. Security and Compliance
|
215 |
-
|
|
|
|
|
|
|
216 |
|
217 |
-
6. Deployment
|
218 |
-
|
|
|
|
|
|
|
219 |
|
220 |
-
7. Team
|
221 |
-
Required
|
|
|
|
|
222 |
|
223 |
-
8. Cost
|
224 |
-
|
|
|
|
|
225 |
|
226 |
-
9. Project
|
227 |
-
|
|
|
|
|
|
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
except Exception as e:
|
246 |
logger.error(f"Error generating plan: {str(e)}", exc_info=True)
|
|
|
3 |
from fastapi.staticfiles import StaticFiles
|
4 |
from fastapi.templating import Jinja2Templates
|
5 |
from pydantic import BaseModel
|
6 |
+
from app.controllers.f5_model import TextGenerationHandler
|
7 |
from typing import List, Optional
|
8 |
import logging
|
9 |
from app.helpers.plan_parser import parse_plan_sections
|
10 |
+
import json
|
11 |
|
12 |
# Configure logging
|
13 |
logging.basicConfig(
|
|
|
24 |
templates = Jinja2Templates(directory="app/templates")
|
25 |
|
26 |
# Initialize the F5 model
|
27 |
+
model_handler = TextGenerationHandler()
|
28 |
|
29 |
class ChatMessage(BaseModel):
|
30 |
role: str
|
|
|
191 |
try:
|
192 |
logger.info(f"Plan generation request received for project: {request.project_title}")
|
193 |
|
194 |
+
async def generate():
|
195 |
+
features_list = request.features
|
196 |
+
if features_list and isinstance(features_list[0], dict):
|
197 |
+
features_str = ', '.join([f.get('feature', '') for f in features_list])
|
198 |
+
else:
|
199 |
+
features_str = ', '.join(features_list)
|
200 |
|
201 |
+
prompt = f"""As a technical project planner, create a detailed project plan for a {request.platform} SaaS application named '{request.project_title}'.
|
202 |
+
Follow this structure exactly, replacing the placeholders with detailed content:
|
203 |
|
204 |
1. Executive Summary
|
205 |
+
Brief overview of the {request.project_title} SaaS application
|
206 |
+
Key business objectives
|
207 |
+
Technical approach using {request.platform}
|
208 |
+
Expected outcomes
|
209 |
|
210 |
2. Project Scope and Objectives
|
211 |
+
Core Features:
|
212 |
+
- {features_str}
|
213 |
+
Technical Goals:
|
214 |
+
- Scalable {request.platform} architecture
|
215 |
+
- Secure data handling
|
216 |
+
- High availability
|
217 |
|
218 |
3. Architecture Overview
|
219 |
+
{request.platform} Components:
|
220 |
+
- Frontend: [Specify technology]
|
221 |
+
- Backend: [Specify {request.platform} services]
|
222 |
+
- Database: [Specify database solution]
|
223 |
+
- Storage: [Specify storage solution]
|
224 |
+
- Authentication: [Specify auth service]
|
225 |
|
226 |
4. Component Design
|
227 |
+
[For each major component, specify:
|
228 |
+
- Technical specifications
|
229 |
+
- Integration points
|
230 |
+
- Performance requirements]
|
231 |
|
232 |
5. Security and Compliance
|
233 |
+
{request.platform}-specific security measures:
|
234 |
+
- Data encryption
|
235 |
+
- Access controls
|
236 |
+
- Compliance requirements
|
237 |
|
238 |
+
6. Deployment Strategy
|
239 |
+
- CI/CD pipeline
|
240 |
+
- Testing approach
|
241 |
+
- Monitoring setup
|
242 |
+
- {request.platform} specific considerations
|
243 |
|
244 |
+
7. Team Requirements
|
245 |
+
- Required roles
|
246 |
+
- Technical skills
|
247 |
+
- Team structure
|
248 |
|
249 |
+
8. Cost Estimation
|
250 |
+
- {request.platform} service costs
|
251 |
+
- Development costs
|
252 |
+
- Operational costs
|
253 |
|
254 |
+
9. Project Timeline
|
255 |
+
Phase 1: Setup and Infrastructure
|
256 |
+
Phase 2: Core Development
|
257 |
+
Phase 3: Testing and Deployment
|
258 |
+
Phase 4: Launch and Monitoring
|
259 |
|
260 |
+
Additional Context:
|
261 |
+
Requirements: {request.requirements}
|
262 |
+
Additional Requirements: {request.additional_requirements}"""
|
263 |
+
|
264 |
+
response_content = ""
|
265 |
+
async for chunk in model_handler.stream_response(prompt):
|
266 |
+
if chunk["type"] == "content":
|
267 |
+
response_content = chunk["content"]
|
268 |
+
sections = parse_plan_sections(response_content)
|
269 |
+
yield f"data: {json.dumps({
|
270 |
+
'type': 'complete',
|
271 |
+
'project_title': request.project_title,
|
272 |
+
'sections': sections,
|
273 |
+
'raw_content': response_content
|
274 |
+
})}\n\n"
|
275 |
+
elif chunk["type"] == "error":
|
276 |
+
yield f"data: {json.dumps({
|
277 |
+
'type': 'error',
|
278 |
+
'content': chunk['content']
|
279 |
+
})}\n\n"
|
280 |
+
|
281 |
+
return StreamingResponse(generate(), media_type="text/event-stream")
|
282 |
|
283 |
except Exception as e:
|
284 |
logger.error(f"Error generating plan: {str(e)}", exc_info=True)
|
app/templates/index.html
CHANGED
@@ -218,36 +218,7 @@
|
|
218 |
</div>
|
219 |
</div>
|
220 |
|
221 |
-
|
222 |
-
<div id="rawOutput" class="mt-8 bg-white rounded-lg shadow-lg p-6">
|
223 |
-
<h2 class="text-xl font-bold mb-4 text-gray-800">Raw Response Data</h2>
|
224 |
-
|
225 |
-
<div class="space-y-6">
|
226 |
-
<!-- Request Data -->
|
227 |
-
<div class="bg-gray-50 p-4 rounded-lg">
|
228 |
-
<h3 class="text-lg font-semibold mb-2 text-blue-600">Request Data</h3>
|
229 |
-
<pre id="rawRequest" class="bg-gray-900 text-green-400 p-4 rounded overflow-auto max-h-60 font-mono text-sm whitespace-pre-wrap"></pre>
|
230 |
-
</div>
|
231 |
-
|
232 |
-
<!-- API Response -->
|
233 |
-
<div class="bg-gray-50 p-4 rounded-lg">
|
234 |
-
<h3 class="text-lg font-semibold mb-2 text-blue-600">API Response</h3>
|
235 |
-
<pre id="rawApiResponse" class="bg-gray-900 text-green-400 p-4 rounded overflow-auto max-h-96 font-mono text-sm whitespace-pre-wrap"></pre>
|
236 |
-
</div>
|
237 |
-
|
238 |
-
<!-- Raw Content -->
|
239 |
-
<div class="bg-gray-50 p-4 rounded-lg">
|
240 |
-
<h3 class="text-lg font-semibold mb-2 text-blue-600">Raw Content</h3>
|
241 |
-
<pre id="rawContent" class="bg-gray-900 text-green-400 p-4 rounded overflow-auto max-h-96 font-mono text-sm whitespace-pre-wrap"></pre>
|
242 |
-
</div>
|
243 |
-
|
244 |
-
<!-- Parsed Sections -->
|
245 |
-
<div class="bg-gray-50 p-4 rounded-lg">
|
246 |
-
<h3 class="text-lg font-semibold mb-2 text-blue-600">Parsed Sections</h3>
|
247 |
-
<pre id="rawSections" class="bg-gray-900 text-green-400 p-4 rounded overflow-auto max-h-96 font-mono text-sm whitespace-pre-wrap"></pre>
|
248 |
-
</div>
|
249 |
-
</div>
|
250 |
-
</div>
|
251 |
</div>
|
252 |
|
253 |
<!-- Chat Widget -->
|
@@ -297,6 +268,7 @@
|
|
297 |
<script>
|
298 |
let chatHistory = [];
|
299 |
let chatWindowOpen = false;
|
|
|
300 |
|
301 |
function toggleChat() {
|
302 |
const chatWindow = document.getElementById('chatWindow');
|
@@ -458,8 +430,7 @@
|
|
458 |
additional_requirements: additionalRequirements
|
459 |
};
|
460 |
|
461 |
-
|
462 |
-
document.getElementById('rawRequest').textContent = JSON.stringify(requestData, null, 2);
|
463 |
|
464 |
const loading = document.getElementById('planLoading');
|
465 |
const output = document.getElementById('planOutput');
|
@@ -467,31 +438,38 @@
|
|
467 |
output.classList.add('hidden');
|
468 |
|
469 |
try {
|
|
|
470 |
const response = await fetch('/generate-plan', {
|
471 |
method: 'POST',
|
472 |
headers: { 'Content-Type': 'application/json' },
|
473 |
body: JSON.stringify(requestData)
|
474 |
});
|
475 |
|
|
|
476 |
const reader = response.body.getReader();
|
477 |
const decoder = new TextDecoder();
|
478 |
|
479 |
-
// Show progress bar
|
480 |
document.getElementById('progressBar').classList.remove('hidden');
|
|
|
481 |
|
482 |
while (true) {
|
483 |
const { value, done } = await reader.read();
|
484 |
-
if (done)
|
|
|
|
|
|
|
485 |
|
486 |
const chunk = decoder.decode(value);
|
|
|
|
|
487 |
const lines = chunk.split('\n');
|
488 |
-
|
489 |
for (const line of lines) {
|
490 |
if (line.startsWith('data: ')) {
|
491 |
const data = JSON.parse(line.slice(5));
|
|
|
492 |
|
493 |
if (data.type === 'progress') {
|
494 |
-
|
495 |
const progressFill = document.getElementById('progressFill');
|
496 |
const progressText = document.getElementById('progressText');
|
497 |
const progressStep = document.getElementById('progressStep');
|
@@ -500,13 +478,12 @@
|
|
500 |
progressText.textContent = `${Math.round(data.progress)}%`;
|
501 |
progressStep.textContent = `Step ${data.step}/${data.total}`;
|
502 |
} else if (data.type === 'complete') {
|
503 |
-
|
|
|
|
|
504 |
displayPlan(data);
|
505 |
-
document.getElementById('rawApiResponse').textContent = JSON.stringify(data, null, 2);
|
506 |
-
document.getElementById('rawContent').textContent = data.raw_content;
|
507 |
-
document.getElementById('rawSections').textContent = JSON.stringify(data.sections, null, 2);
|
508 |
} else if (data.type === 'error') {
|
509 |
-
console.error('Error:', data.error);
|
510 |
alert(`Error: ${data.error}`);
|
511 |
}
|
512 |
}
|
@@ -514,11 +491,11 @@
|
|
514 |
}
|
515 |
|
516 |
} catch (error) {
|
517 |
-
console.error('Error:', error);
|
518 |
alert('Error generating plan');
|
519 |
} finally {
|
|
|
520 |
loading.style.display = 'none';
|
521 |
-
// Hide progress bar when done
|
522 |
document.getElementById('progressBar').classList.add('hidden');
|
523 |
}
|
524 |
}
|
@@ -540,38 +517,86 @@
|
|
540 |
const title = document.getElementById('planTitle');
|
541 |
const sections = document.getElementById('planSections');
|
542 |
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
548 |
|
549 |
-
|
550 |
-
|
551 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
552 |
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
if (
|
569 |
-
|
570 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
571 |
}
|
572 |
});
|
573 |
|
574 |
-
|
575 |
}
|
576 |
</script>
|
577 |
</body>
|
|
|
218 |
</div>
|
219 |
</div>
|
220 |
|
221 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
</div>
|
223 |
|
224 |
<!-- Chat Widget -->
|
|
|
268 |
<script>
|
269 |
let chatHistory = [];
|
270 |
let chatWindowOpen = false;
|
271 |
+
let accumulatedContent = '';
|
272 |
|
273 |
function toggleChat() {
|
274 |
const chatWindow = document.getElementById('chatWindow');
|
|
|
430 |
additional_requirements: additionalRequirements
|
431 |
};
|
432 |
|
433 |
+
console.log('Request Data:', requestData);
|
|
|
434 |
|
435 |
const loading = document.getElementById('planLoading');
|
436 |
const output = document.getElementById('planOutput');
|
|
|
438 |
output.classList.add('hidden');
|
439 |
|
440 |
try {
|
441 |
+
console.log('Starting plan generation request...');
|
442 |
const response = await fetch('/generate-plan', {
|
443 |
method: 'POST',
|
444 |
headers: { 'Content-Type': 'application/json' },
|
445 |
body: JSON.stringify(requestData)
|
446 |
});
|
447 |
|
448 |
+
console.log('Got response, starting reader...');
|
449 |
const reader = response.body.getReader();
|
450 |
const decoder = new TextDecoder();
|
451 |
|
|
|
452 |
document.getElementById('progressBar').classList.remove('hidden');
|
453 |
+
console.log('Progress bar shown');
|
454 |
|
455 |
while (true) {
|
456 |
const { value, done } = await reader.read();
|
457 |
+
if (done) {
|
458 |
+
console.log('Stream complete');
|
459 |
+
break;
|
460 |
+
}
|
461 |
|
462 |
const chunk = decoder.decode(value);
|
463 |
+
console.log('Received chunk:', chunk);
|
464 |
+
|
465 |
const lines = chunk.split('\n');
|
|
|
466 |
for (const line of lines) {
|
467 |
if (line.startsWith('data: ')) {
|
468 |
const data = JSON.parse(line.slice(5));
|
469 |
+
console.log('Parsed data:', data);
|
470 |
|
471 |
if (data.type === 'progress') {
|
472 |
+
console.log('Progress update:', data.progress + '%');
|
473 |
const progressFill = document.getElementById('progressFill');
|
474 |
const progressText = document.getElementById('progressText');
|
475 |
const progressStep = document.getElementById('progressStep');
|
|
|
478 |
progressText.textContent = `${Math.round(data.progress)}%`;
|
479 |
progressStep.textContent = `Step ${data.step}/${data.total}`;
|
480 |
} else if (data.type === 'complete') {
|
481 |
+
accumulatedContent += data.raw_content;
|
482 |
+
data.sections = parseSections(accumulatedContent);
|
483 |
+
console.log('Generation complete, displaying plan with content:', accumulatedContent);
|
484 |
displayPlan(data);
|
|
|
|
|
|
|
485 |
} else if (data.type === 'error') {
|
486 |
+
console.error('Error in generation:', data.error);
|
487 |
alert(`Error: ${data.error}`);
|
488 |
}
|
489 |
}
|
|
|
491 |
}
|
492 |
|
493 |
} catch (error) {
|
494 |
+
console.error('Error in generatePlan:', error);
|
495 |
alert('Error generating plan');
|
496 |
} finally {
|
497 |
+
console.log('Cleaning up...');
|
498 |
loading.style.display = 'none';
|
|
|
499 |
document.getElementById('progressBar').classList.add('hidden');
|
500 |
}
|
501 |
}
|
|
|
517 |
const title = document.getElementById('planTitle');
|
518 |
const sections = document.getElementById('planSections');
|
519 |
|
520 |
+
try {
|
521 |
+
// Update debug panel with raw data
|
522 |
+
document.getElementById('requestData').textContent = JSON.stringify({
|
523 |
+
project_title: data.project_title,
|
524 |
+
sections: data.sections
|
525 |
+
}, null, 2);
|
526 |
+
|
527 |
+
// Display raw content with line breaks preserved
|
528 |
+
const rawContent = document.getElementById('rawContent');
|
529 |
+
rawContent.textContent = data.raw_content;
|
530 |
+
|
531 |
+
// Show content length
|
532 |
+
const contentLength = data.raw_content.length;
|
533 |
+
document.getElementById('rawContentLength').textContent =
|
534 |
+
`Length: ${contentLength} characters`;
|
535 |
+
|
536 |
+
// Display parsed sections
|
537 |
+
document.getElementById('parsedSections').textContent =
|
538 |
+
JSON.stringify(data.sections, null, 2);
|
539 |
+
|
540 |
+
// Original plan display code
|
541 |
+
title.textContent = `Technical Project Plan: ${data.project_title}`;
|
542 |
+
sections.innerHTML = '';
|
543 |
|
544 |
+
output.classList.remove('hidden'); // Show the output section instead of hiding it
|
545 |
+
} catch (error) {
|
546 |
+
console.error('Error in displayPlan:', error);
|
547 |
+
alert('Error displaying plan. Check console for details.');
|
548 |
+
}
|
549 |
+
}
|
550 |
+
|
551 |
+
function parseSections(content) {
|
552 |
+
const sections = {
|
553 |
+
"executive_summary": "",
|
554 |
+
"scope_objectives": "",
|
555 |
+
"architecture_overview": "",
|
556 |
+
"component_design": "",
|
557 |
+
"security_compliance": "",
|
558 |
+
"deployment_testing": "",
|
559 |
+
"team_roles": "",
|
560 |
+
"cost_estimates": "",
|
561 |
+
"project_phases": ""
|
562 |
+
};
|
563 |
+
|
564 |
+
let currentSection = null;
|
565 |
+
const lines = content.split('\n');
|
566 |
|
567 |
+
for (const line of lines) {
|
568 |
+
if (line.startsWith('1. Executive Summary')) {
|
569 |
+
currentSection = "executive_summary";
|
570 |
+
} else if (line.startsWith('2. Project Scope and Objectives')) {
|
571 |
+
currentSection = "scope_objectives";
|
572 |
+
} else if (line.startsWith('3. Architecture Overview')) {
|
573 |
+
currentSection = "architecture_overview";
|
574 |
+
} else if (line.startsWith('4. Component Design')) {
|
575 |
+
currentSection = "component_design";
|
576 |
+
} else if (line.startsWith('5. Security and Compliance')) {
|
577 |
+
currentSection = "security_compliance";
|
578 |
+
} else if (line.startsWith('6. Deployment and Testing')) {
|
579 |
+
currentSection = "deployment_testing";
|
580 |
+
} else if (line.startsWith('7. Team Roles')) {
|
581 |
+
currentSection = "team_roles";
|
582 |
+
} else if (line.startsWith('8. Cost Estimates')) {
|
583 |
+
currentSection = "cost_estimates";
|
584 |
+
} else if (line.startsWith('9. Project Phases')) {
|
585 |
+
currentSection = "project_phases";
|
586 |
+
} else if (currentSection && line.trim()) {
|
587 |
+
sections[currentSection] += line + '\n';
|
588 |
+
}
|
589 |
+
}
|
590 |
+
|
591 |
+
// Trim any trailing whitespace from sections
|
592 |
+
Object.keys(sections).forEach(key => {
|
593 |
+
sections[key] = sections[key].trim();
|
594 |
+
if (!sections[key]) {
|
595 |
+
sections[key] = "No content generated";
|
596 |
}
|
597 |
});
|
598 |
|
599 |
+
return sections;
|
600 |
}
|
601 |
</script>
|
602 |
</body>
|