Spaces:
Sleeping
Sleeping
File size: 9,914 Bytes
ad5ca2c d6482c4 15cd602 ad5ca2c d6482c4 15cd602 d6482c4 15cd602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import subprocess
import streamlit as st
import cv2
import numpy as np
from PIL import Image
import pytesseract
def get_pdf_page_count(pdf_path):
try:
# Running pdfinfo command to get information about the PDF
result = subprocess.run(['pdfinfo', pdf_path], stdout=subprocess.PIPE, text=True)
# Parsing the output to find the line with the number of pages
for line in result.stdout.split('\n'):
if 'Pages:' in line:
return int(line.split(':')[1].strip())
except Exception as e:
print(f"An error occurred: {e}")
return None
#configurable extract rectange rectangle size
def extract_rectangle_from_image(gray, min_width, min_height):
bounding_boxes = []
#gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 50, 150, apertureSize=3)
#edges = cv2.Canny(gray, 10, 200, apertureSize=3)
kernel = np.ones((3,3), np.uint8)
dilated_edges = cv2.dilate(edges, kernel, iterations=1)
contours, _ = cv2.findContours(dilated_edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
#contours, _ = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
index = 0
for cnt in contours:
approx = cv2.approxPolyDP(cnt, 0.01*cv2.arcLength(cnt, True), True)
#approx = cv2.approxPolyDP(cnt, 0.1*cv2.arcLength(cnt, True), True)
if len(approx) == 4: # Rectangle check
x, y, w, h = cv2.boundingRect(approx)
# print(f"x: {x}, y: {y}, w: {w}, h: {h}")
if w >= min_width and h >= min_height:
bounding_boxes.append((x, y, w, h))
#print(x, y, w, h)
return bounding_boxes
def is_close(box1, box2, threshold=10):
# Calculate the distance between the top-left corners of the two boxes
distance = ((box1[0] - box2[0]) ** 2 + (box1[1] - box2[1]) ** 2) ** 0.5
return distance < threshold
def remove_close_boxes(boxes, threshold=10):
kept_boxes = []
for box in boxes:
# Assume the box is not close to others by default
is_close_to_others = False
for kept_box in kept_boxes:
if is_close(box, kept_box, threshold):
is_close_to_others = True
break
# If the box is not close to any box we've kept, add it to the list of kept boxes
if not is_close_to_others:
kept_boxes.append(box)
return kept_boxes
def is_contained(box1, box2):
"""
Check if box1 is contained within box2.
Each box is defined as (x, y, w, h).
"""
x1, y1, w1, h1 = box1
x2, y2, w2, h2 = box2
# Check if all corners of box1 are inside box2
return x2 <= x1 and y2 <= y1 and x2 + w2 >= x1 + w1 and y2 + h2 >= y1 + h1
def remove_contained_boxes(boxes):
"""
Remove boxes that are contained within other boxes.
"""
non_contained_boxes = []
for i, box1 in enumerate(boxes):
# Check if there's another box that contains box1
if not any(is_contained(box1, box2) for j, box2 in enumerate(boxes) if i != j):
non_contained_boxes.append(box1)
return non_contained_boxes
def draw_colored_boxes_on_image_np(image, boxes_list,color_tuple):
for x, y, w, h in boxes_list:
#x, y, w, h = box[0]
cv2.rectangle(image, (x, y), (x + w, y + h), color_tuple, thickness=5)
def is_filled_rectangle(image, rect, background_threshold=10, variance_threshold=0.1):
x, y, w, h = rect
roi = image[y+1:y+h-1, x+1:x+w-1]
return np.all(roi == 0)
def get_below_box(image_np, x, y,width,step=15):
#print("x,y,width="+str(x)+","+str(y)+","+str(width))
index_y = -1
#print("get_below_box"+str(image_np.shape))
if y+step < image_np.shape[0]:
index_y = y
while index_y+step < image_np.shape[0]:
#print(str( np.all(image_np[index_y:index_y+step,x:x+width] == 255)))
# image_np_copy = image_np.copy()
# bgr_image = cv2.cvtColor(image_np_copy, cv2.COLOR_GRAY2BGR)
# cv2.rectangle(bgr_image, (x, index_y), (x + width, index_y +step), color_tuple, thickness=5)
# display_image_np(bgr_image)
if np.all(image_np[index_y:index_y+step,x:x+width] == 255):
# index_y += step
break
index_y += step
return index_y
def get_above_box(image_np, x, y,width,step=15):
#print("x,y,width="+str(x)+","+str(y)+","+str(width))
index_y = -1
#print("get_below_box"+str(image_np.shape))
if y-step > 0:
index_y = y
while index_y-step > 0:
#print(str( np.all(image_np[index_y:index_y+step,x:x+width] == 255)))
# image_np_copy = image_np.copy()
# bgr_image = cv2.cvtColor(image_np_copy, cv2.COLOR_GRAY2BGR)
# color_tuple=(0, 255, 0)
# cv2.rectangle(bgr_image, (x, index_y-step), (x + width, index_y), color_tuple, thickness=5)
# display_image_np(bgr_image)
if np.all(image_np[index_y-step:index_y,x:x+width] == 255):
# index_y += step
break
index_y -= step
return index_y
def is_note_rectangle(image_np, rect):
x, y, w, h = rect
roi = image_np[y+1:y+h-1, x+1:x+w-1]
roi_converted = Image.fromarray(cv2.cvtColor(roi, cv2.COLOR_BGR2RGB))
text = pytesseract.image_to_string(roi_converted)
text = text.strip()
note_str="note"
print("is note text box="+str(text.lower().startswith(note_str.lower())))
return text.lower().startswith(note_str.lower())
def extract_bounding_boxes_from_image_np(image_np, bounding_boxes_list, above_check_offset, above_caption_offset, color_tuple):
image_np_copy=image_np.copy()
rect_content_list=[]
above_rect_content_list=[]
figures_image_list=[]
tables_image_list=[]
index = 0
for box in bounding_boxes_list:
x, y, w, h = box
if not is_filled_rectangle(image_np_copy, box):
# print("box="+str(box)+"not filled")
y_index= get_below_box(image_np, x, y+h,w)
if y_index == -1 or is_note_rectangle(image_np_copy, box):
# print("below text not found")
rect_content =image_np[y:y+h, x:x+w]
# rect_content_list.append(rect_content)
cv2.rectangle(image_np_copy, (x, y), (x+w, y+h), color_tuple, cv2.FILLED)
else:
# print("below text found")
rect_content =image_np[y:y_index, x:x+w]
# rect_content_list.append(rect_content)
cv2.rectangle(image_np_copy, (x, y), (x+w, y_index), color_tuple, cv2.FILLED)
cv2.rectangle(image_np_copy, (x, y), (x+w, y+h), color_tuple, cv2.FILLED)
above_box_y= get_above_box(image_np, x, y,w)
if above_box_y == -1 or above_box_y == y:
# print("box="+str(box)+"no above box")
above_rect_content_list.append(None)
rect_content_list.append(rect_content)
else:
# print("box="+str(box)+"above box exist")
above_rect_content = image_np[above_box_y:y, x:x+w]
# above_rect_content_list.append(above_rect_content)
above_converted = Image.fromarray(cv2.cvtColor(above_rect_content, cv2.COLOR_BGR2RGB))
text = pytesseract.image_to_string(above_converted)
text = text.strip()
figure_str ="Figure"
table_str ="Table"
if text.lower().startswith(figure_str.lower()):
print(text)
figures_image_list.append((text,rect_content))
elif text.lower().startswith(table_str.lower()):
print(text)
tables_image_list.append((text,rect_content))
else:
above_rect_content_list.append((text, rect_content))
rect_content_list.append(rect_content)
cv2.rectangle(image_np_copy, (x, above_box_y), (x+w, y), color_tuple, cv2.FILLED)
# above_rect_content = image_np[y-above_check_offset:y, x:x+w]
# if np.all(above_rect_content == 255):
# # print("box="+str(box)+"above all white")
# above_rect_content_list.append(None)
# else:
# # print("box="+str(box)+"above not all white")
# above_rect_content = image_np[y-above_caption_offset:y, x:x+w]
# above_rect_content_list.append(above_rect_content)
# cv2.rectangle(image_np_copy, (x, y), (x+w, y-above_caption_offset), color_tuple, cv2.FILLED)
index += 1
# else:
# print("box="+str(box)+"filled")
return rect_content_list,above_rect_content_list, figures_image_list, tables_image_list, image_np_copy
def gray_pdf_image_np_to_text(image_index,gray_pdf_image_np, debug=False):
bounding_boxes_list = extract_rectangle_from_image(gray_pdf_image_np, 500, 20)
bounding_boxes_list = remove_close_boxes (bounding_boxes_list, 10)
bounding_boxes_list = remove_contained_boxes(bounding_boxes_list)
if debug:
bgr_image = cv2.cvtColor(gray_pdf_image_np, cv2.COLOR_GRAY2BGR)
color_tuple = (0, 255, 0)
draw_colored_boxes_on_image_np(bgr_image, bounding_boxes_list, color_tuple)
# st.image(Image.fromarray(bgr_image)) #to_be_displayed
text_box_list, above_test_box_list,figures_image_list,tables_image_list, cropped_image = extract_bounding_boxes_from_image_np(gray_pdf_image_np,
bounding_boxes_list, 30,
50, (255, 255, 255))
if debug:
debug_text_box_index = 0
for text_box, above_text_box in zip(text_box_list, above_test_box_list):
print("text box start")
if above_text_box is not None:
st.write(above_text_box[0])
st.image(Image.fromarray(above_text_box[1]))
# st.write(text)
st.image(Image.fromarray(text_box))
debug_text_box_index = debug_text_box_index + 1
for figure in figures_image_list:
st.write(figure[0])
st.image(Image.fromarray(figure[1]))
for table in tables_image_list:
st.write(table[0])
st.image(Image.fromarray(table[1])) |