import streamlit as st import os import json from transformers import GPT2Tokenizer, GPT2LMHeadModel, BertTokenizer, BertModel,T5Tokenizer, T5ForConditionalGeneration,AutoTokenizer, AutoModelForSeq2SeqLM import torch from sklearn.metrics.pairwise import cosine_similarity import numpy as np import nltk from nltk.tokenize import sent_tokenize from nltk.corpus import stopwords def is_new_file_upload(uploaded_file): if 'last_uploaded_file' in st.session_state: # Check if the newly uploaded file is different from the last one if (uploaded_file.name != st.session_state.last_uploaded_file['name'] or uploaded_file.size != st.session_state.last_uploaded_file['size']): st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size} # st.write("A new src image file has been uploaded.") return True else: # st.write("The same src image file has been re-uploaded.") return False else: # st.write("This is the first file upload detected.") st.session_state.last_uploaded_file = {'name': uploaded_file.name, 'size': uploaded_file.size} return True def combined_similarity(similarity, sentence, query): # Tokenize both the sentence and the query # sentence_words = set(sentence.split()) # query_words = set(query.split()) sentence_words = set(word for word in sentence.split() if word.lower() not in st.session_state.stop_words) query_words = set(word for word in query.split() if word.lower() not in st.session_state.stop_words) # Calculate the number of common words common_words = len(sentence_words.intersection(query_words)) # Adjust the similarity score with the common words count combined_score = similarity + (common_words / max(len(query_words), 1)) # Normalize by the length of the query to keep the score between -1 and 1 return combined_score big_text = """

Knowledge Extraction A

""" # Display the styled text st.markdown(big_text, unsafe_allow_html=True) uploaded_json_file = st.file_uploader("Upload a pre-processed file", type=['json']) st.markdown( f'Sample 1 download and then upload to above', unsafe_allow_html=True) st.markdown("sample queries for above file:
What is death? What is a lucid dream? What is the seat of consciousness?",unsafe_allow_html=True) st.markdown( f'Sample 2 download and then upload to above', unsafe_allow_html=True) st.markdown("sample queries for above file:
what does nontechnical managers worry about? what if you put all the knowledge, frameworks, and tips from this book to full use? tell me about AI agent",unsafe_allow_html=True) if uploaded_json_file is not None: if is_new_file_upload(uploaded_json_file): print("is new file uploaded") save_path = './uploaded_files' if not os.path.exists(save_path): os.makedirs(save_path) with open(os.path.join(save_path, uploaded_json_file.name), "wb") as f: f.write(uploaded_json_file.getbuffer()) # Write the file to the specified location st.success(f'Saved file temp_{uploaded_json_file.name} in {save_path}') st.session_state.uploaded_path=os.path.join(save_path, uploaded_json_file.name) # st.session_state.page_count = utils.get_pdf_page_count(st.session_state.uploaded_pdf_path) # print("page_count=",st.session_state.page_count) content = uploaded_json_file.read() try: st.session_state.restored_paragraphs = json.loads(content) #print(data) # Check if the parsed data is a dictionary if isinstance(st.session_state.restored_paragraphs, list): # Count the restored_paragraphs of top-level elements st.session_state.list_count = len(st.session_state.restored_paragraphs) st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count }') else: st.write('The JSON content is not a dictionary.') except json.JSONDecodeError: st.write('Invalid JSON file.') st.rerun() if 'is_initialized' not in st.session_state: st.session_state['is_initialized'] = True nltk.download('punkt') nltk.download('stopwords') st.session_state.stop_words = set(stopwords.words('english')) st.session_state.bert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased", ) st.session_state.bert_model = BertModel.from_pretrained("bert-base-uncased", ).to('cuda') if 'list_count' in st.session_state: st.write(f'The number of elements at the top level of the hierarchy: {st.session_state.list_count }') if 'paragraph_sentence_encodings' not in st.session_state: print("start embedding paragarphs") read_progress_bar = st.progress(0) st.session_state.paragraph_sentence_encodings = [] for index,paragraph in enumerate(st.session_state.restored_paragraphs): #print(paragraph) progress_percentage = (index) / (st.session_state.list_count - 1) # print(progress_percentage) read_progress_bar.progress(progress_percentage) sentence_encodings = [] sentences = sent_tokenize(paragraph['text']) for sentence in sentences: if sentence.strip().endswith('?'): sentence_encodings.append(None) continue if len(sentence.strip()) < 4: sentence_encodings.append(None) continue sentence_tokens = st.session_state.bert_tokenizer(sentence, return_tensors="pt", padding=True, truncation=True).to('cuda') with torch.no_grad(): sentence_encoding = st.session_state.bert_model(**sentence_tokens).last_hidden_state[:, 0, :].cpu().numpy() sentence_encodings.append([sentence, sentence_encoding]) # sentence_encodings.append([sentence,bert_model(**sentence_tokens).last_hidden_state[:, 0, :].detach().numpy()]) st.session_state.paragraph_sentence_encodings.append([paragraph, sentence_encodings]) st.rerun() if 'paragraph_sentence_encodings' in st.session_state: query = st.text_input("Enter your query") if query: query_tokens = st.session_state.bert_tokenizer(query, return_tensors="pt", padding=True, truncation=True).to('cuda') with torch.no_grad(): # Disable gradient calculation for inference # Perform the forward pass on the GPU query_encoding = st.session_state.bert_model(**query_tokens).last_hidden_state[:, 0, :].cpu().numpy() # Move the result to CPU and convert to NumPy paragraph_scores = [] sentence_scores = [] sentence_encoding = [] total_count=len(st.session_state.paragraph_sentence_encodings) processing_progress_bar = st.progress(0) for index,paragraph_sentence_encoding in enumerate(st.session_state.paragraph_sentence_encodings): progress_percentage = index / (total_count- 1) processing_progress_bar.progress(progress_percentage) best_similarity = -1 sentence_similarities = [] for sentence_encoding in paragraph_sentence_encoding[1]: if sentence_encoding: similarity = cosine_similarity(query_encoding, sentence_encoding[1])[0][0] # adjusted_similarity = similarity*len(sentence_encoding[0].split())**0.5 combined_score = combined_similarity(similarity, sentence_encoding[0], query) # print("sentence="+sentence_encoding[0] + " len="+str()) sentence_similarities.append(combined_score) sentence_scores.append((combined_score, sentence_encoding[0])) # best_similarity = max(best_similarity, similarity) sentence_similarities.sort(reverse=True) # Calculate the average of the top three sentence similarities if len(sentence_similarities) >= 3: top_three_avg_similarity = np.mean(sentence_similarities[:3]) elif sentence_similarities: top_three_avg_similarity = np.mean(sentence_similarities) else: top_three_avg_similarity = 0 paragraph_scores.append((top_three_avg_similarity, paragraph_sentence_encoding[0])) sentence_scores = sorted(sentence_scores, key=lambda x: x[0], reverse=True) # Display the scores and sentences # print("Top scored sentences and their scores:") # for score, sentence in sentence_scores: # Print top 10 for demonstration # print(f"Score: {score:.4f}, Sentence: {sentence}") # Sort the paragraphs by their best similarity score paragraph_scores = sorted(paragraph_scores, key=lambda x: x[0], reverse=True) # Debug prints to understand the scores and paragraphs st.write("Top scored paragraphs and their scores:") for score, paragraph in paragraph_scores[:5]: # Print top 5 for debugging st.write(f"Score: {score}, Paragraph: {paragraph['text']}")