import streamlit as st import json import os import re import requests import uuid import time from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # Load the Hugging Face model model_name = "ethicsadvisorproject/Llama-2-7b-ethical-chat-finetune" tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir="/tmp") model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map="auto", offload_folder="/tmp" ) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=200) DB_DIR = 'user_data' # Directory to store individual user data os.makedirs(DB_DIR, exist_ok=True) # Ensure the directory exists def stream_data(textto): for word in textto.split(" "): yield word + " " time.sleep(0.02) def get_user_id(): """Generate or retrieve a unique ID for the user.""" if "user_id" not in st.session_state: st.session_state.user_id = str(uuid.uuid4()) # Generate a new UUID return st.session_state.user_id def get_user_file(user_id): """Return the file path for a user's data file ok.""" return os.path.join(DB_DIR, f"{user_id}.json") def load_user_data(user_id): """Load chat history for the user.""" user_file = get_user_file(user_id) if os.path.exists(user_file): with open(user_file, 'r') as file: return json.load(file) return {"chat_history": []} # Default empty chat history def save_user_data(user_id, data): """Save chat history for the user.""" user_file = get_user_file(user_id) with open(user_file, 'w') as file: json.dump(data, file) def main(): endpoint_url = "https://zizytd-ethical-app-docker.hf.space/predict" # Endpoint URL from .env user_id = get_user_id() user_data = load_user_data(user_id) # st.set_page_config(page_title='Ethical GPT Assistant', layout='wide', # # initial_sidebar_state=st.session_state.get('sidebar_state', 'collapsed'), # ) st.image("./logo/images.jpeg", use_container_width=True ) #st.snow() intro = """ ## Welcome to EthicsAdvisor Ethical GPT is an AI-powered chatbot designed to interact with you in an ethical, safe, and responsible manner. Our goal is to ensure that all responses provided by the assistant are respectful and considerate of various societal and ethical standards. Feel free to ask any questions, and rest assured that the assistant will provide helpful and appropriate responses. """ st.markdown(intro) # Sidebar options models = ["llama-ethical"] st.sidebar.selectbox("Select Model", models, index=0) st.sidebar.title("❄️EthicsAdvisor 📄") st.sidebar.caption("Make AI to responde more ethical") with st.sidebar.expander("See fine tuning info"): st.caption("Original Data: [Data] (https://huggingface.co/datasets/MasahiroKaneko/eagle/)") st.caption("Modified Data: [Data](https://huggingface.co/datasets/ethicsadvisorproject/ethical_data_bigger/) 📝") st.caption("Used Model and Notebook: [Original model](https://huggingface.co/ethicsadvisorproject/Llama-2-7b-ethical-chat-finetune/) 🎈, Notebook used for fine tuning [Notebook](https://colab.research.google.com/drive/1eAAjdwwD0i-i9-ehEJYUKXvZoYK0T3ue#scrollTo=ib_We3NLtj2E)") with st.sidebar.expander("ℹ️ **Take survey**"): st.markdown("""You are welcome to give us your input on this research [here](https://forms.office.com/r/H4ARtETV2q).""") cols = st.columns(2) # Load chat history into session state if "messages" not in st.session_state: st.session_state.messages = user_data["chat_history"] # Display chat history for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # # User input # # if prompt := st.chat_input("What is up?"): # # st.session_state.messages.append({"role": "user", "content": prompt}) # # with st.chat_message("user"): # # st.markdown(prompt) # # # Send request to the endpoint # # headers = {'ngrok-skip-browser-warning': 'true'} # # data = {'messages': st.session_state.messages[-1]['content']} # # try: # # response = requests.post(endpoint_url, json=data, headers=headers) # # response.raise_for_status() # Raise exception for HTTP errors # # response_data = response.json() # # response_text = response_data.get('response_text', '') # # Clean response text # message = re.sub(r'\[INST\].*?\[/INST\]', '', response_text).strip() # with st.chat_message("assistant"): # st.markdown(message) # st.session_state.messages.append({"role": "assistant", "content": message}) # except requests.exceptions.RequestException as e: # st.error(f"Error communicating with the endpoint: {e}") # except KeyError: # st.error(f"Unexpected response format. Missing 'response_text' key. Received: {response.text}") if prompt := st.chat_input("What is up?"): response = pipe(f"[INST] {prompt} [/INST]") response_text = response[0]["generated_text"].replace("[INST]", "").replace("[/INST]", "").strip() with st.chat_message("assistant"): st.markdown(response_text) st.session_state.messages.append({"role": "assistant", "content": response_text}) # Save updated chat history user_data["chat_history"] = st.session_state.messages save_user_data(user_id, user_data) # Clear Chat button if st.sidebar.button('Clear Chat'): st.session_state.messages = [] user_data["chat_history"] = [] save_user_data(user_id, user_data) st.rerun() if __name__ == '__main__': main()