Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
import itertools
|
5 |
+
from pinecone import Pinecone
|
6 |
+
from langchain_community.llms import HuggingFaceHub
|
7 |
+
from langchain.chains import LLMChain
|
8 |
+
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from langchain.prompts import PromptTemplate
|
11 |
+
from sentence_transformers import SentenceTransformer
|
12 |
+
import torch
|
13 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
14 |
+
import logging
|
15 |
+
|
16 |
+
# Set up environment, Pinecone is a database
|
17 |
+
load_dotenv() # Load document .env
|
18 |
+
cache_dir = os.getenv("CACHE_DIR") # Directory for cache
|
19 |
+
Huggingface_token = os.getenv("API_TOKEN") # Huggingface API key
|
20 |
+
pc = Pinecone(api_key=os.getenv("PINECONE_API_KEY")) # Database API key
|
21 |
+
index = pc.Index(os.getenv("Index_Name")) # Database index name
|
22 |
+
|
23 |
+
# Initialize embedding model (LLM will be saved to cache_dir if assigned)
|
24 |
+
embedding_model = "all-mpnet-base-v2" # See link https://www.sbert.net/docs/pretrained_models.html
|
25 |
+
|
26 |
+
if cache_dir:
|
27 |
+
embedding = SentenceTransformer(embedding_model, cache_folder=cache_dir)
|
28 |
+
else:
|
29 |
+
embedding = SentenceTransformer(embedding_model)
|
30 |
+
|
31 |
+
# Read the PDF files, divide them into chunks, and Embedding
|
32 |
+
def read_doc(file_path):
|
33 |
+
file_loader = PyPDFDirectoryLoader(file_path)
|
34 |
+
documents = file_loader.load()
|
35 |
+
return documents
|
36 |
+
|
37 |
+
def chunk_data(docs, chunk_size=300, chunk_overlap=50):
|
38 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
|
39 |
+
doc = text_splitter.split_documents(docs)
|
40 |
+
return doc
|
41 |
+
|
42 |
+
# Save embeddings to database
|
43 |
+
def chunks(iterable, batch_size=100):
|
44 |
+
"""A helper function to break an iterable into chunks of size batch_size."""
|
45 |
+
it = iter(iterable)
|
46 |
+
chunk = tuple(itertools.islice(it, batch_size))
|
47 |
+
while chunk:
|
48 |
+
yield chunk
|
49 |
+
chunk = tuple(itertools.islice(it, batch_size))
|
50 |
+
|
51 |
+
# Streamlit interface start, uploading file
|
52 |
+
st.title("RAG-Anwendung (RAG Application)")
|
53 |
+
st.caption("Diese Anwendung kann Ihnen helfen, kostenlos Fragen zu PDF-Dateien zu stellen. (This application can help you ask questions about PDF files for free.)")
|
54 |
+
|
55 |
+
uploaded_file = st.file_uploader("Wählen Sie eine PDF-Datei, das Laden kann eine Weile dauern. (Choose a PDF file, loading might take a while.)", type="pdf")
|
56 |
+
if uploaded_file is not None:
|
57 |
+
# Ensure the temp directory exists and is empty
|
58 |
+
temp_dir = "tempDir"
|
59 |
+
if os.path.exists(temp_dir):
|
60 |
+
for file in os.listdir(temp_dir):
|
61 |
+
file_path = os.path.join(temp_dir, file)
|
62 |
+
if os.path.isfile(file_path):
|
63 |
+
os.remove(file_path)
|
64 |
+
elif os.path.isdir(file_path):
|
65 |
+
os.rmdir(file_path) # Only removes empty directories
|
66 |
+
|
67 |
+
os.makedirs(temp_dir, exist_ok=True)
|
68 |
+
|
69 |
+
# Save the uploaded file temporarily
|
70 |
+
temp_file_path = os.path.join(temp_dir, uploaded_file.name)
|
71 |
+
with open(temp_file_path, "wb") as f:
|
72 |
+
f.write(uploaded_file.getbuffer())
|
73 |
+
doc = read_doc(temp_dir+"/")
|
74 |
+
documents = chunk_data(docs=doc)
|
75 |
+
texts = [document.page_content for document in documents]
|
76 |
+
pdf_vectors = embedding.encode(texts)
|
77 |
+
vector_count = len(documents)
|
78 |
+
example_data_generator = map(lambda i: (f'id-{i}', pdf_vectors[i], {"text": texts[i]}), range(vector_count))
|
79 |
+
if 'ns1' in index.describe_index_stats()['namespaces']:
|
80 |
+
index.delete(delete_all=True,namespace='ns1')
|
81 |
+
for ids_vectors_chunk in chunks(example_data_generator, batch_size=100):
|
82 |
+
index.upsert(vectors=ids_vectors_chunk,namespace='ns1')
|
83 |
+
|
84 |
+
# Search query related context
|
85 |
+
sample_query = st.text_input("Stellen Sie eine Frage zu dem PDF: (Ask a question related to the PDF:)")
|
86 |
+
if st.button("Abschicken (Submit)"):
|
87 |
+
if uploaded_file is not None and sample_query:
|
88 |
+
query_vector = embedding.encode(sample_query).tolist()
|
89 |
+
query_search = index.query(vector=query_vector, top_k=5, include_metadata=True)
|
90 |
+
|
91 |
+
matched_contents = [match["metadata"]["text"] for match in query_search["matches"]]
|
92 |
+
|
93 |
+
# Rerank
|
94 |
+
rerank_model = "BAAI/bge-reranker-v2-m3"
|
95 |
+
if cache_dir:
|
96 |
+
tokenizer = AutoTokenizer.from_pretrained(rerank_model, cache_dir=cache_dir)
|
97 |
+
model = AutoModelForSequenceClassification.from_pretrained(rerank_model, cache_dir=cache_dir)
|
98 |
+
else:
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained(rerank_model)
|
100 |
+
model = AutoModelForSequenceClassification.from_pretrained(rerank_model)
|
101 |
+
model.eval()
|
102 |
+
|
103 |
+
pairs = [[sample_query, content] for content in matched_contents]
|
104 |
+
with torch.no_grad():
|
105 |
+
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=300)
|
106 |
+
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
|
107 |
+
matched_contents = [content for _, content in sorted(zip(scores, matched_contents), key=lambda x: x[0], reverse=True)]
|
108 |
+
matched_contents = matched_contents[0]
|
109 |
+
del model
|
110 |
+
torch.cuda.empty_cache()
|
111 |
+
|
112 |
+
# Display matched contents after reranking
|
113 |
+
st.markdown("### Möglicherweise relevante Abschnitte aus dem PDF (Potentially relevant sections from the PDF):")
|
114 |
+
st.write(matched_contents)
|
115 |
+
|
116 |
+
# Get answer
|
117 |
+
query_model = "meta-llama/Meta-Llama-3-8B-Instruct"
|
118 |
+
llm_huggingface = HuggingFaceHub(repo_id=query_model, model_kwargs={"temperature": 0.7, "max_length": 500})
|
119 |
+
|
120 |
+
prompt_template = PromptTemplate(input_variables=['query', 'context'], template="{query}, Beim Beantworten der Frage bitte mit dem Wort 'Antwort:' beginnen,unter Berücksichtigung des folgenden Kontexts: \n\n{context}")
|
121 |
+
|
122 |
+
prompt = prompt_template.format(query=sample_query, context=matched_contents)
|
123 |
+
chain = LLMChain(llm=llm_huggingface, prompt=prompt_template)
|
124 |
+
result = chain.run(query=sample_query, context=matched_contents)
|
125 |
+
|
126 |
+
# Polish answer
|
127 |
+
result = result.replace(prompt, "")
|
128 |
+
special_start = "Antwort:"
|
129 |
+
start_index = result.find(special_start)
|
130 |
+
if (start_index != -1):
|
131 |
+
result = result[start_index + len(special_start):].lstrip()
|
132 |
+
else:
|
133 |
+
result = result.lstrip()
|
134 |
+
|
135 |
+
# Display the final answer with a note about limitations
|
136 |
+
st.markdown("### Antwort (Answer):")
|
137 |
+
st.write(result)
|
138 |
+
st.markdown("**Hinweis:** Aufgrund begrenzter Rechenleistung kann das große Sprachmodell möglicherweise keine vollständige Antwort liefern. (Note: Due to limited computational power, the large language model might not be able to provide a complete response.)")
|