Collections: - Name: FPN License: Apache License 2.0 Metadata: Training Data: - Cityscapes - ADE20K Paper: Title: Panoptic Feature Pyramid Networks URL: https://arxiv.org/abs/1901.02446 README: configs/sem_fpn/README.md Frameworks: - PyTorch Models: - Name: fpn_r50_4xb2-80k_cityscapes-512x1024 In Collection: FPN Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 74.52 mIoU(ms+flip): 76.08 Config: configs/sem_fpn/fpn_r50_4xb2-80k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-50 - FPN Training Resources: 4x V100 GPUS Memory (GB): 2.8 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes_20200717_021437-94018a0d.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x1024_80k_cityscapes/fpn_r50_512x1024_80k_cityscapes-20200717_021437.log.json Paper: Title: Panoptic Feature Pyramid Networks URL: https://arxiv.org/abs/1901.02446 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fpn_head.py#L12 Framework: PyTorch - Name: fpn_r101_4xb2-80k_cityscapes-512x1024 In Collection: FPN Results: Task: Semantic Segmentation Dataset: Cityscapes Metrics: mIoU: 75.8 mIoU(ms+flip): 77.4 Config: configs/sem_fpn/fpn_r101_4xb2-80k_cityscapes-512x1024.py Metadata: Training Data: Cityscapes Batch Size: 8 Architecture: - R-101 - FPN Training Resources: 4x V100 GPUS Memory (GB): 3.9 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes_20200717_012416-c5800d4c.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x1024_80k_cityscapes/fpn_r101_512x1024_80k_cityscapes-20200717_012416.log.json Paper: Title: Panoptic Feature Pyramid Networks URL: https://arxiv.org/abs/1901.02446 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fpn_head.py#L12 Framework: PyTorch - Name: fpn_r50_4xb4-160k_ade20k-512x512 In Collection: FPN Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 37.49 mIoU(ms+flip): 39.09 Config: configs/sem_fpn/fpn_r50_4xb4-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-50 - FPN Training Resources: 4x V100 GPUS Memory (GB): 4.9 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k_20200718_131734-5b5a6ab9.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r50_512x512_160k_ade20k/fpn_r50_512x512_160k_ade20k-20200718_131734.log.json Paper: Title: Panoptic Feature Pyramid Networks URL: https://arxiv.org/abs/1901.02446 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fpn_head.py#L12 Framework: PyTorch - Name: fpn_r101_4xb4-160k_ade20k-512x512 In Collection: FPN Results: Task: Semantic Segmentation Dataset: ADE20K Metrics: mIoU: 39.35 mIoU(ms+flip): 40.72 Config: configs/sem_fpn/fpn_r101_4xb4-160k_ade20k-512x512.py Metadata: Training Data: ADE20K Batch Size: 16 Architecture: - R-101 - FPN Training Resources: 4x V100 GPUS Memory (GB): 5.9 Weights: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k_20200718_131734-306b5004.pth Training log: https://download.openmmlab.com/mmsegmentation/v0.5/sem_fpn/fpn_r101_512x512_160k_ade20k/fpn_r101_512x512_160k_ade20k-20200718_131734.log.json Paper: Title: Panoptic Feature Pyramid Networks URL: https://arxiv.org/abs/1901.02446 Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/fpn_head.py#L12 Framework: PyTorch