_base_ = './segnext_mscan-t_1xb16-adamw-160k_ade20k-512x512.py' # model settings checkpoint_file = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/segnext/mscan_s_20230227-f33ccdf2.pth' # noqa ham_norm_cfg = dict(type='GN', num_groups=32, requires_grad=True) model = dict( type='EncoderDecoder', backbone=dict( embed_dims=[64, 128, 320, 512], depths=[2, 2, 4, 2], init_cfg=dict(type='Pretrained', checkpoint=checkpoint_file), norm_cfg=dict(type='BN', requires_grad=True)), decode_head=dict( type='LightHamHead', in_channels=[128, 320, 512], in_index=[1, 2, 3], channels=256, ham_channels=256, ham_kwargs=dict(MD_R=16), dropout_ratio=0.1, num_classes=150, norm_cfg=ham_norm_cfg, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), # model training and testing settings train_cfg=dict(), test_cfg=dict(mode='whole'))