_base_ = [ '../_base_/models/bisenetv1_r18-d32.py', '../_base_/datasets/coco-stuff164k.py', '../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' ] crop_size = (512, 512) data_preprocessor = dict(size=crop_size) norm_cfg = dict(type='SyncBN', requires_grad=True) model = dict( data_preprocessor=data_preprocessor, decode_head=dict(num_classes=171), auxiliary_head=[ dict( type='FCNHead', in_channels=128, channels=64, num_convs=1, num_classes=171, in_index=1, norm_cfg=norm_cfg, concat_input=False, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), dict( type='FCNHead', in_channels=128, channels=64, num_convs=1, num_classes=171, in_index=2, norm_cfg=norm_cfg, concat_input=False, align_corners=False, loss_decode=dict( type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), ]) param_scheduler = [ dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000), dict( type='PolyLR', eta_min=1e-4, power=0.9, begin=1000, end=160000, by_epoch=False, ) ] optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0005) optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer) train_dataloader = dict(batch_size=4, num_workers=4) val_dataloader = dict(batch_size=1, num_workers=4) test_dataloader = val_dataloader