Spaces:
Sleeping
Sleeping
Update models/llamaCustom.py
Browse files- models/llamaCustom.py +40 -85
models/llamaCustom.py
CHANGED
|
@@ -6,9 +6,9 @@ from typing import Any, List, Mapping, Optional
|
|
| 6 |
import numpy as np
|
| 7 |
import openai
|
| 8 |
import pandas as pd
|
| 9 |
-
import streamlit as st
|
| 10 |
from dotenv import load_dotenv
|
| 11 |
-
from huggingface_hub import HfFileSystem
|
|
|
|
| 12 |
from llama_index import (
|
| 13 |
Document,
|
| 14 |
GPTVectorStoreIndex,
|
|
@@ -19,17 +19,12 @@ from llama_index import (
|
|
| 19 |
StorageContext,
|
| 20 |
load_index_from_storage,
|
| 21 |
)
|
| 22 |
-
from
|
| 23 |
-
|
| 24 |
-
# from langchain.llms.base import LLM
|
| 25 |
-
# from llama_index.prompts import Prompt
|
| 26 |
-
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 27 |
|
| 28 |
# from utils.customLLM import CustomLLM
|
| 29 |
|
| 30 |
load_dotenv()
|
| 31 |
# openai.api_key = os.getenv("OPENAI_API_KEY")
|
| 32 |
-
|
| 33 |
fs = HfFileSystem()
|
| 34 |
|
| 35 |
# define prompt helper
|
|
@@ -38,98 +33,62 @@ CONTEXT_WINDOW = 2048
|
|
| 38 |
# set number of output tokens
|
| 39 |
NUM_OUTPUT = 525
|
| 40 |
# set maximum chunk overlap
|
| 41 |
-
|
| 42 |
|
| 43 |
prompt_helper = PromptHelper(
|
| 44 |
context_window=CONTEXT_WINDOW,
|
| 45 |
num_output=NUM_OUTPUT,
|
| 46 |
-
chunk_overlap_ratio=
|
| 47 |
)
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
model
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
top_k=50,
|
| 65 |
-
temperature=0.7,
|
| 66 |
-
)
|
| 67 |
-
|
| 68 |
-
return pipe
|
| 69 |
|
| 70 |
|
| 71 |
-
class
|
| 72 |
-
|
| 73 |
-
self.model_name = model_name
|
| 74 |
-
self.pipeline = model_pipeline
|
| 75 |
|
| 76 |
-
|
| 77 |
-
def metadata(self) -> LLMMetadata:
|
| 78 |
-
"""Get LLM metadata."""
|
| 79 |
-
return LLMMetadata(
|
| 80 |
-
context_window=CONTEXT_WINDOW,
|
| 81 |
-
num_output=NUM_OUTPUT,
|
| 82 |
-
model_name=self.model_name,
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
-
def complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
|
| 86 |
prompt_length = len(prompt)
|
| 87 |
-
response = self.pipeline(prompt, max_new_tokens=
|
| 88 |
|
| 89 |
# only return newly generated tokens
|
| 90 |
-
|
| 91 |
-
return CompletionResponse(text=text)
|
| 92 |
-
|
| 93 |
-
def stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
|
| 94 |
-
raise NotImplementedError()
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
# # only return newly generated tokens
|
| 101 |
-
# return response[prompt_length:]
|
| 102 |
-
|
| 103 |
-
# @property
|
| 104 |
-
# def _identifying_params(self) -> Mapping[str, Any]:
|
| 105 |
-
# return {"name_of_model": self.model_name}
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
|
| 111 |
|
| 112 |
-
@st.cache_resource
|
| 113 |
class LlamaCustom:
|
| 114 |
# define llm
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
def __init__(self, model_name: str) -> None:
|
| 121 |
-
pipe = load_model(mode_name=model_name)
|
| 122 |
-
llm = OurLLM(model_name=model_name, model_pipeline=pipe)
|
| 123 |
-
self.service_context = ServiceContext.from_defaults(
|
| 124 |
-
llm=llm, prompt_helper=prompt_helper
|
| 125 |
-
)
|
| 126 |
-
self.vector_index = self.initialize_index(model_name=model_name)
|
| 127 |
-
|
| 128 |
-
def initialize_index(self, model_name: str):
|
| 129 |
-
index_name = model_name.split("/")[-1]
|
| 130 |
|
| 131 |
-
|
|
|
|
| 132 |
|
|
|
|
|
|
|
| 133 |
if os.path.exists(path=file_path):
|
| 134 |
# rebuild storage context
|
| 135 |
storage_context = StorageContext.from_defaults(persist_dir=file_path)
|
|
@@ -160,9 +119,5 @@ class LlamaCustom:
|
|
| 160 |
def get_response(self, query_str):
|
| 161 |
print("query_str: ", query_str)
|
| 162 |
query_engine = self.vector_index.as_query_engine()
|
| 163 |
-
# query_engine = self.vector_index.as_query_engine(
|
| 164 |
-
# text_qa_template=text_qa_template, refine_template=refine_template
|
| 165 |
-
# )
|
| 166 |
response = query_engine.query(query_str)
|
| 167 |
-
|
| 168 |
-
return str(response)
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
import openai
|
| 8 |
import pandas as pd
|
|
|
|
| 9 |
from dotenv import load_dotenv
|
| 10 |
+
from huggingface_hub import HfFileSystem
|
| 11 |
+
from langchain.llms.base import LLM
|
| 12 |
from llama_index import (
|
| 13 |
Document,
|
| 14 |
GPTVectorStoreIndex,
|
|
|
|
| 19 |
StorageContext,
|
| 20 |
load_index_from_storage,
|
| 21 |
)
|
| 22 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# from utils.customLLM import CustomLLM
|
| 25 |
|
| 26 |
load_dotenv()
|
| 27 |
# openai.api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
| 28 |
fs = HfFileSystem()
|
| 29 |
|
| 30 |
# define prompt helper
|
|
|
|
| 33 |
# set number of output tokens
|
| 34 |
NUM_OUTPUT = 525
|
| 35 |
# set maximum chunk overlap
|
| 36 |
+
CHUNK_OVERLAP_RATION = 0.2
|
| 37 |
|
| 38 |
prompt_helper = PromptHelper(
|
| 39 |
context_window=CONTEXT_WINDOW,
|
| 40 |
num_output=NUM_OUTPUT,
|
| 41 |
+
chunk_overlap_ratio=CHUNK_OVERLAP_RATION,
|
| 42 |
)
|
| 43 |
|
| 44 |
+
llm_model_name = "bigscience/bloom-560m"
|
| 45 |
+
tokenizer = AutoTokenizer.from_pretrained(llm_model_name)
|
| 46 |
+
model = AutoModelForCausalLM.from_pretrained(llm_model_name, config="T5Config")
|
| 47 |
+
|
| 48 |
+
model_pipeline = pipeline(
|
| 49 |
+
model=model,
|
| 50 |
+
tokenizer=tokenizer,
|
| 51 |
+
task="text-generation",
|
| 52 |
+
# device=0, # GPU device number
|
| 53 |
+
# max_length=512,
|
| 54 |
+
do_sample=True,
|
| 55 |
+
top_p=0.95,
|
| 56 |
+
top_k=50,
|
| 57 |
+
temperature=0.7,
|
| 58 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
+
class CustomLLM(LLM):
|
| 62 |
+
pipeline = model_pipeline
|
|
|
|
|
|
|
| 63 |
|
| 64 |
+
def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
prompt_length = len(prompt)
|
| 66 |
+
response = self.pipeline(prompt, max_new_tokens=525)[0]["generated_text"]
|
| 67 |
|
| 68 |
# only return newly generated tokens
|
| 69 |
+
return response[prompt_length:]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
@property
|
| 72 |
+
def _identifying_params(self) -> Mapping[str, Any]:
|
| 73 |
+
return {"name_of_model": self.model_name}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
@property
|
| 76 |
+
def _llm_type(self) -> str:
|
| 77 |
+
return "custom"
|
| 78 |
|
| 79 |
|
|
|
|
| 80 |
class LlamaCustom:
|
| 81 |
# define llm
|
| 82 |
+
llm_predictor = LLMPredictor(llm=CustomLLM())
|
| 83 |
+
service_context = ServiceContext.from_defaults(
|
| 84 |
+
llm_predictor=llm_predictor, prompt_helper=prompt_helper
|
| 85 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
def __init__(self, name: str) -> None:
|
| 88 |
+
self.vector_index = self.initialize_index(index_name=name)
|
| 89 |
|
| 90 |
+
def initialize_index(self, index_name):
|
| 91 |
+
file_path = f"./vectorStores/{index_name}"
|
| 92 |
if os.path.exists(path=file_path):
|
| 93 |
# rebuild storage context
|
| 94 |
storage_context = StorageContext.from_defaults(persist_dir=file_path)
|
|
|
|
| 119 |
def get_response(self, query_str):
|
| 120 |
print("query_str: ", query_str)
|
| 121 |
query_engine = self.vector_index.as_query_engine()
|
|
|
|
|
|
|
|
|
|
| 122 |
response = query_engine.query(query_str)
|
| 123 |
+
return str(response)
|
|
|