import gradio as gr import spaces import torch torch.jit.script = lambda f: f # Avoid script error in lambda from t2v_metrics import VQAScore, list_all_vqascore_models # Global model variable, but do not initialize or move to CUDA here cur_model_name = "clip-flant5-xl" model_pipe = update_model(cur_model_name) def update_model(model_name): return VQAScore(model=model_name, device="cuda") @spaces.GPU(duration = 20) def generate(model_name, image, text): if model_name != cur_model_name: model_pipe = update_model(model_name) print("Image:", image) # Debug: Print image path print("Text:", text) # Debug: Print text input print("Using model:", model_name) # Wrap the model call in a try-except block to capture and debug CUDA errors try: result = model_pipe(images=[image], texts=[text]).cpu()[0][0].item() # Perform the model inference print("Result", result) except RuntimeError as e: print(f"RuntimeError during model inference: {e}") raise e return result # Return the result demo = gr.Interface( fn=generate, # function to call # ['clip-flant5-xxl', 'clip-flant5-xl', 'clip-flant5-xxl-no-system', 'clip-flant5-xxl-no-system-no-user', 'llava-v1.5-13b', 'llava-v1.5-7b', 'sharegpt4v-7b', 'sharegpt4v-13b', 'llava-v1.6-13b', 'instructblip-flant5-xxl', 'instructblip-flant5-xl'] inputs=[gr.Dropdown(["clip-flant5-xl", "clip-flant5-xxl"], label="Model Name"), gr.Image(type="filepath"), gr.Textbox(label="Prompt")], # define the types of inputs outputs="number", # define the type of output title="VQAScore", # title of the app description="This model evaluates the similarity between an image and a text prompt." ) demo.queue() demo.launch()