Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
torch.jit.script = lambda f: f | |
from t2v_metrics import VQAScore, list_all_vqascore_models | |
print(list_all_vqascore_models()) | |
# Initialize the model only once | |
model_pipe = None | |
def initialize_model(model_name): | |
global model_pipe | |
if model_pipe is None: | |
model_pipe = VQAScore(model=model_name) # our recommended scoring model | |
print("Model initialized!") | |
return model_pipe | |
def generate(model_name, image, text): | |
print("Model_name:", model_name) | |
print("Image:", image) | |
print("Text:", text) | |
model_pipe = initialize_model(model_name) | |
return model_pipe(images=[image], texts=[text]) | |
iface = gr.Interface( | |
fn=generate, # function to call | |
inputs=[gr.Dropdown(["clip-flant5-xl", "clip-flant5-xxl"], label="Model Name"), gr.Image(type="filepath"), gr.Textbox(label="Prompt")], # define the types of inputs | |
# inputs=[gr.Image(type="filepath"), gr.Textbox(label="Prompt")], # define the types of inputs | |
outputs="number", # define the type of output | |
title="VQAScore", # title of the app | |
description="This model evaluates the similarity between an image and a text prompt." | |
).launch() | |