Spaces:
Running
Running
Update to_md function for illustrating code blocks
Browse files
app.py
CHANGED
@@ -1,3 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def to_md(content):
|
2 |
is_inside_code_block = False
|
3 |
output_spans = []
|
@@ -35,4 +101,65 @@ def to_md(content):
|
|
35 |
output_spans.append("\n")
|
36 |
else:
|
37 |
output_spans.append(content[i])
|
38 |
-
return "".join(output_spans)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
import tiktoken
|
3 |
+
|
4 |
+
import datetime
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
|
8 |
+
openai.api_key = os.getenv('API_KEY')
|
9 |
+
openai.request_times = 0
|
10 |
+
|
11 |
+
def ask(question, history, behavior):
|
12 |
+
openai.request_times += 1
|
13 |
+
print(f"request times {openai.request_times}: {datetime.datetime.now()}: {question}")
|
14 |
+
try:
|
15 |
+
response = openai.ChatCompletion.create(
|
16 |
+
model="gpt-3.5-turbo",
|
17 |
+
messages=forget_long_term(
|
18 |
+
[
|
19 |
+
{"role":"system", "content":content}
|
20 |
+
for content in behavior
|
21 |
+
] + [
|
22 |
+
{"role":"user" if i%2==0 else "assistant", "content":content}
|
23 |
+
for i,content in enumerate(history + [question])
|
24 |
+
]
|
25 |
+
)
|
26 |
+
)["choices"][0]["message"]["content"]
|
27 |
+
while response.startswith("\n"):
|
28 |
+
response = response[1:]
|
29 |
+
except Exception as e:
|
30 |
+
print(e)
|
31 |
+
response = 'Timeout! Please wait a few minutes and retry'
|
32 |
+
history = history + [question, response]
|
33 |
+
return history
|
34 |
+
|
35 |
+
def num_tokens_from_messages(messages, model="gpt-3.5-turbo"):
|
36 |
+
"""Returns the number of tokens used by a list of messages."""
|
37 |
+
try:
|
38 |
+
encoding = tiktoken.encoding_for_model(model)
|
39 |
+
except KeyError:
|
40 |
+
encoding = tiktoken.get_encoding("cl100k_base")
|
41 |
+
if model == "gpt-3.5-turbo": # note: future models may deviate from this
|
42 |
+
num_tokens = 0
|
43 |
+
for message in messages:
|
44 |
+
num_tokens += 4 # every message follows <im_start>{role/name}\n{content}<im_end>\n
|
45 |
+
for key, value in message.items():
|
46 |
+
num_tokens += len(encoding.encode(value))
|
47 |
+
if key == "name": # if there's a name, the role is omitted
|
48 |
+
num_tokens += -1 # role is always required and always 1 token
|
49 |
+
num_tokens += 2 # every reply is primed with <im_start>assistant
|
50 |
+
return num_tokens
|
51 |
+
else:
|
52 |
+
raise NotImplementedError(f"""num_tokens_from_messages() is not presently implemented for model {model}.
|
53 |
+
See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens.""")
|
54 |
+
|
55 |
+
def forget_long_term(messages, max_num_tokens=4000):
|
56 |
+
while num_tokens_from_messages(messages)>max_num_tokens:
|
57 |
+
if messages[0]["role"]=="system" and not len(messages[0]["content"]>=max_num_tokens):
|
58 |
+
messages = messages[:1] + messages[2:]
|
59 |
+
else:
|
60 |
+
messages = messages[1:]
|
61 |
+
return messages
|
62 |
+
|
63 |
+
|
64 |
+
import gradio as gr
|
65 |
+
|
66 |
+
|
67 |
def to_md(content):
|
68 |
is_inside_code_block = False
|
69 |
output_spans = []
|
|
|
101 |
output_spans.append("\n")
|
102 |
else:
|
103 |
output_spans.append(content[i])
|
104 |
+
return "".join(output_spans)
|
105 |
+
|
106 |
+
|
107 |
+
def predict(question, history=[], behavior=[]):
|
108 |
+
history = ask(question, history, behavior)
|
109 |
+
response = [(to_md(history[i]),to_md(history[i+1])) for i in range(0,len(history)-1,2)]
|
110 |
+
return "", history, response
|
111 |
+
|
112 |
+
|
113 |
+
with gr.Blocks() as demo:
|
114 |
+
|
115 |
+
examples_txt = [
|
116 |
+
['帮我写一个python脚本实现快排'],
|
117 |
+
['如何用numpy提取数组的分位数?'],
|
118 |
+
['how to match the code block in markdown such like ```def foo():\n pass``` through regex in python?'],
|
119 |
+
['how to load a pre-trained language model and generate sentences?'],
|
120 |
+
]
|
121 |
+
|
122 |
+
examples_bhv = [
|
123 |
+
f"You are a helpful assistant. You will answer all the questions step-by-step.",
|
124 |
+
f"You are a helpful assistant. Today is {datetime.date.today()}.",
|
125 |
+
]
|
126 |
+
|
127 |
+
gr.Markdown(
|
128 |
+
"""
|
129 |
+
朋友你好,
|
130 |
+
|
131 |
+
这是我利用[gradio](https://gradio.app/creating-a-chatbot/)编写的一个小网页,用于以网页的形式给大家分享ChatGPT请求服务,希望你玩的开心。关于使用技巧或学术研讨,欢迎在[Community](https://huggingface.co/spaces/zhangjf/chatbot/discussions)中和我交流。
|
132 |
+
|
133 |
+
这一版相比于原版的[chatbot](https://huggingface.co/spaces/zhangjf/chatbot),用了较低版本的gradio==3.16.2,因而能更好地展示markdown中的源代码
|
134 |
+
|
135 |
+
p.s. 响应时间和聊天内容长度正相关,一般能在5秒~30秒内响应。
|
136 |
+
""")
|
137 |
+
|
138 |
+
behavior = gr.State([])
|
139 |
+
|
140 |
+
with gr.Column(variant="panel"):
|
141 |
+
with gr.Row().style(equal_height=True):
|
142 |
+
with gr.Column(scale=0.85):
|
143 |
+
bhv = gr.Textbox(show_label=False, placeholder="输入你想让ChatGPT扮演的人设").style(container=False)
|
144 |
+
with gr.Column(scale=0.15, min_width=0):
|
145 |
+
button_set = gr.Button("Set")
|
146 |
+
bhv.submit(fn=lambda x:(x,[x]), inputs=[bhv], outputs=[bhv, behavior])
|
147 |
+
button_set.click(fn=lambda x:(x,[x]), inputs=[bhv], outputs=[bhv, behavior])
|
148 |
+
|
149 |
+
|
150 |
+
state = gr.State([])
|
151 |
+
|
152 |
+
with gr.Column(variant="panel"):
|
153 |
+
chatbot = gr.Chatbot()
|
154 |
+
txt = gr.Textbox(show_label=False, placeholder="输入你想让ChatGPT回答的问题").style(container=False)
|
155 |
+
with gr.Row():
|
156 |
+
button_gen = gr.Button("Submit")
|
157 |
+
button_clr = gr.Button("Clear")
|
158 |
+
|
159 |
+
gr.Examples(examples=examples_bhv, inputs=bhv, label="Examples for setting behavior")
|
160 |
+
gr.Examples(examples=examples_txt, inputs=txt, label="Examples for asking question")
|
161 |
+
txt.submit(predict, [txt, state, behavior], [txt, state, chatbot])
|
162 |
+
button_gen.click(fn=predict, inputs=[txt, state, behavior], outputs=[txt, state, chatbot])
|
163 |
+
button_clr.click(fn=lambda :([],[]), inputs=None, outputs=[chatbot, state])
|
164 |
+
|
165 |
+
demo.launch()
|