zerhero commited on
Commit
32001b2
·
1 Parent(s): 6250fb8

change base model

Browse files
Files changed (1) hide show
  1. gui.py +30 -13
gui.py CHANGED
@@ -1,18 +1,16 @@
1
  import spaces
2
  import os
3
- from stablepy import Model_Diffusers
4
  import torch
5
  import logging
6
  import random
7
  import gradio as gr
8
-
9
  from models.upscaler import upscaler_dict_gui
 
 
10
 
11
  logging.getLogger("diffusers").setLevel(logging.ERROR)
12
- import diffusers
13
-
14
  diffusers.utils.logging.set_verbosity(40)
15
- from utils.download_utils import download_things
16
 
17
  hf_token: str = os.environ.get("HF_TOKEN")
18
 
@@ -28,7 +26,7 @@ class GuiSD:
28
 
29
  print("Loading model...")
30
  self.model = Model_Diffusers(
31
- base_model_id="cagliostrolab/animagine-xl-3.1",
32
  task_name="txt2img",
33
  vae_model=None,
34
  type_model_precision=torch.float16,
@@ -60,7 +58,12 @@ class GuiSD:
60
  model_is_xl = "xl" in model_name.lower()
61
  sdxl_in_vae = vae_model and "sdxl" in vae_model.lower()
62
  model_type = "SDXL" if model_is_xl else "SD 1.5"
63
- incompatible_vae = (model_is_xl and vae_model and not sdxl_in_vae) or (not model_is_xl and sdxl_in_vae)
 
 
 
 
 
64
 
65
  if incompatible_vae:
66
  vae_model = None
@@ -210,7 +213,7 @@ class GuiSD:
210
  print(la)
211
  lora_type = ("animetarot" in la.lower() or "Hyper-SD15-8steps".lower() in la.lower())
212
  if (model_is_xl and lora_type) or (not model_is_xl and not lora_type):
213
- msg_inc_lora = f"The LoRA {la} is for {'SD 1.5' if model_is_xl else 'SDXL'}, but you are using {model_type}."
214
  gr.Info(msg_inc_lora)
215
  msg_lora.append(msg_inc_lora)
216
 
@@ -223,8 +226,16 @@ class GuiSD:
223
  params_ip_scale: list = []
224
 
225
  all_adapters = [
226
- (image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1),
227
- (image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2),
 
 
 
 
 
 
 
 
228
  ]
229
 
230
  for (imgip,
@@ -263,11 +274,18 @@ class GuiSD:
263
  if task == "inpaint" and not image_mask:
264
  raise ValueError("No mask image found: Specify one in 'Image Mask'")
265
 
266
- if upscaler_model_path in [None, "Lanczos", "Nearest"]:
 
 
 
 
267
  upscaler_model = upscaler_model_path
268
  else:
269
  directory_upscalers = 'upscalers'
270
- os.makedirs(directory_upscalers, exist_ok=True)
 
 
 
271
 
272
  url_upscaler = upscaler_dict_gui[upscaler_model_path]
273
 
@@ -309,7 +327,6 @@ class GuiSD:
309
  "inpaint_only": adetailer_inpaint_only,
310
  "sampler": adetailer_sampler,
311
  }
312
-
313
  adetailer_params_B: dict = {
314
  "face_detector_ad": face_detector_ad_b,
315
  "person_detector_ad": person_detector_ad_b,
 
1
  import spaces
2
  import os
 
3
  import torch
4
  import logging
5
  import random
6
  import gradio as gr
7
+ import diffusers
8
  from models.upscaler import upscaler_dict_gui
9
+ from stablepy import Model_Diffusers
10
+ from utils.download_utils import download_things
11
 
12
  logging.getLogger("diffusers").setLevel(logging.ERROR)
 
 
13
  diffusers.utils.logging.set_verbosity(40)
 
14
 
15
  hf_token: str = os.environ.get("HF_TOKEN")
16
 
 
26
 
27
  print("Loading model...")
28
  self.model = Model_Diffusers(
29
+ base_model_id="models/animaPencilXL_v500.safetensors",
30
  task_name="txt2img",
31
  vae_model=None,
32
  type_model_precision=torch.float16,
 
58
  model_is_xl = "xl" in model_name.lower()
59
  sdxl_in_vae = vae_model and "sdxl" in vae_model.lower()
60
  model_type = "SDXL" if model_is_xl else "SD 1.5"
61
+ incompatible_vae = ((
62
+ model_is_xl and
63
+ vae_model and
64
+ not sdxl_in_vae) or
65
+ (not model_is_xl and
66
+ sdxl_in_vae))
67
 
68
  if incompatible_vae:
69
  vae_model = None
 
213
  print(la)
214
  lora_type = ("animetarot" in la.lower() or "Hyper-SD15-8steps".lower() in la.lower())
215
  if (model_is_xl and lora_type) or (not model_is_xl and not lora_type):
216
+ msg_inc_lora = f'The LoRA {la} is for {'SD 1.5' if model_is_xl else 'SDXL'}, but you are using {model_type}.'
217
  gr.Info(msg_inc_lora)
218
  msg_lora.append(msg_inc_lora)
219
 
 
226
  params_ip_scale: list = []
227
 
228
  all_adapters = [
229
+ (image_ip1,
230
+ mask_ip1,
231
+ model_ip1,
232
+ mode_ip1,
233
+ scale_ip1),
234
+ (image_ip2,
235
+ mask_ip2,
236
+ model_ip2,
237
+ mode_ip2,
238
+ scale_ip2),
239
  ]
240
 
241
  for (imgip,
 
274
  if task == "inpaint" and not image_mask:
275
  raise ValueError("No mask image found: Specify one in 'Image Mask'")
276
 
277
+ if upscaler_model_path in [
278
+ None,
279
+ "Lanczos",
280
+ "Nearest"
281
+ ]:
282
  upscaler_model = upscaler_model_path
283
  else:
284
  directory_upscalers = 'upscalers'
285
+ os.makedirs(
286
+ directory_upscalers,
287
+ exist_ok=True
288
+ )
289
 
290
  url_upscaler = upscaler_dict_gui[upscaler_model_path]
291
 
 
327
  "inpaint_only": adetailer_inpaint_only,
328
  "sampler": adetailer_sampler,
329
  }
 
330
  adetailer_params_B: dict = {
331
  "face_detector_ad": face_detector_ad_b,
332
  "person_detector_ad": person_detector_ad_b,