Charles Chan
commited on
Commit
·
908d31d
1
Parent(s):
cb8213b
coding
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🐨
|
4 |
colorFrom: gray
|
5 |
colorTo: red
|
|
|
1 |
---
|
2 |
+
title: TitanQA
|
3 |
emoji: 🐨
|
4 |
colorFrom: gray
|
5 |
colorTo: red
|
app.py
CHANGED
@@ -5,15 +5,7 @@ from langchain_community.vectorstores import FAISS
|
|
5 |
from datasets import load_dataset
|
6 |
import random
|
7 |
|
8 |
-
#
|
9 |
-
knowledge_base = [
|
10 |
-
"Gemma 是 Google 开发的大型语言模型。",
|
11 |
-
"Gemma 具有强大的自然语言处理能力。",
|
12 |
-
"Gemma 可以用于问答、对话、文本生成等任务。",
|
13 |
-
"Gemma 基于 Transformer 架构。",
|
14 |
-
"Gemma 支持多种语言。"
|
15 |
-
]
|
16 |
-
|
17 |
try:
|
18 |
dataset = load_dataset("rorubyy/attack_on_titan_wiki_chinese")
|
19 |
answer_list = [example["Answer"] for example in dataset["train"]]
|
@@ -22,70 +14,88 @@ except Exception as e:
|
|
22 |
st.error(f"读取数据集失败:{e}")
|
23 |
st.stop()
|
24 |
|
25 |
-
|
26 |
-
# 2. 构建向量数据库 (如果需要,仅构建一次)
|
27 |
try:
|
28 |
-
|
29 |
-
|
|
|
|
|
30 |
except Exception as e:
|
31 |
st.error(f"向量数据库构建失败:{e}")
|
32 |
st.stop()
|
33 |
|
34 |
-
#
|
35 |
def answer_question(repo_id, temperature, max_length, question):
|
36 |
-
#
|
37 |
try:
|
38 |
-
|
|
|
39 |
except Exception as e:
|
40 |
st.error(f"Gemma 模型加载失败:{e}")
|
41 |
st.stop()
|
42 |
|
43 |
-
#
|
44 |
try:
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
49 |
|
50 |
-
|
51 |
-
|
52 |
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
58 |
except Exception as e:
|
59 |
st.error(f"问答过程出错:{e}")
|
60 |
-
return "An error occurred during the answering process."
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
st.write(origin_answer)
|
80 |
-
answer = answer_question(gemma, float(temperature), int(max_length), random_question)
|
81 |
-
st.write("生成答案:")
|
82 |
-
st.write(answer)
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
5 |
from datasets import load_dataset
|
6 |
import random
|
7 |
|
8 |
+
# 使用 進擊的巨人 数据集
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
try:
|
10 |
dataset = load_dataset("rorubyy/attack_on_titan_wiki_chinese")
|
11 |
answer_list = [example["Answer"] for example in dataset["train"]]
|
|
|
14 |
st.error(f"读取数据集失败:{e}")
|
15 |
st.stop()
|
16 |
|
17 |
+
# 构建向量数据库 (如果需要,仅构建一次)
|
|
|
18 |
try:
|
19 |
+
with st.spinner("正在读取数据库..."):
|
20 |
+
embeddings = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
|
21 |
+
db = FAISS.from_texts(answer_list, embeddings)
|
22 |
+
st.success("数据库读取完成!")
|
23 |
except Exception as e:
|
24 |
st.error(f"向量数据库构建失败:{e}")
|
25 |
st.stop()
|
26 |
|
27 |
+
# 问答函数
|
28 |
def answer_question(repo_id, temperature, max_length, question):
|
29 |
+
# 初始化 Gemma 模型
|
30 |
try:
|
31 |
+
with st.spinner("正在初始化 Gemma 模型..."):
|
32 |
+
llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={"temperature": temperature, "max_length": max_length})
|
33 |
except Exception as e:
|
34 |
st.error(f"Gemma 模型加载失败:{e}")
|
35 |
st.stop()
|
36 |
|
37 |
+
# 获取答案
|
38 |
try:
|
39 |
+
with st.spinner("正在筛选本地数据集..."):
|
40 |
+
question_embedding = embeddings.embed_query(question)
|
41 |
+
question_embedding_str = " ".join(map(str, question_embedding))
|
42 |
+
# print('question_embedding: ' + question_embedding_str)
|
43 |
+
docs_and_scores = db.similarity_search_with_score(question_embedding_str)
|
44 |
|
45 |
+
context = "\n".join([doc.page_content for doc, _ in docs_and_scores])
|
46 |
+
print('context: ' + context)
|
47 |
|
48 |
+
prompt = f"请根据以下知识库回答问题:\n{context}\n问题:{question}"
|
49 |
+
print('prompt: ' + prompt)
|
50 |
|
51 |
+
with st.spinner("正在生成答案..."):
|
52 |
+
answer = llm.invoke(prompt)
|
53 |
+
# 去掉 prompt 的内容
|
54 |
+
answer = answer.replace(prompt, "").strip()
|
55 |
+
return {"prompt": prompt, "answer": answer}
|
56 |
except Exception as e:
|
57 |
st.error(f"问答过程出错:{e}")
|
58 |
+
return {"prompt": "", "answer": "An error occurred during the answering process."}
|
59 |
+
|
60 |
+
# Streamlit 界面
|
61 |
+
st.title("進擊的巨人 知识库问答系统")
|
62 |
|
63 |
+
col1, col2 = st.columns(2)
|
64 |
+
with col1:
|
65 |
+
gemma = st.selectbox("repo-id", ("google/gemma-2-9b-it", "google/gemma-2-2b-it", "google/recurrentgemma-2b-it"), 2)
|
66 |
+
with col2:
|
67 |
+
temperature = st.number_input("temperature", value=1.0)
|
68 |
+
max_length = st.number_input("max_length", value=1024)
|
69 |
|
70 |
+
col3, col4 = st.columns(2)
|
71 |
+
with col3:
|
72 |
+
if st.button("随机"):
|
73 |
+
dataset_size = len(dataset["train"])
|
74 |
+
random_index = random.randint(0, dataset_size - 1)
|
75 |
+
# 读取随机问题
|
76 |
+
random_question = dataset["train"][random_index]["Question"]
|
77 |
+
origin_answer = dataset["train"][random_index]["Answer"]
|
78 |
+
print('[]' + str(random_index) + '/' + str(dataset_size) + ']random_question: ' + random_question)
|
79 |
+
print('origin_answer: ' + origin_answer)
|
80 |
|
81 |
+
st.write("随机问题:")
|
82 |
+
st.write(random_question)
|
83 |
+
st.write("原始答案:")
|
84 |
+
st.write(origin_answer)
|
85 |
+
result = answer_question(gemma, float(temperature), int(max_length), random_question)
|
86 |
+
print('prompt: ' + result["prompt"])
|
87 |
+
print('answer: ' + result["answer"])
|
88 |
+
st.write("生成答案:")
|
89 |
+
st.write(result["answer"])
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
with col4:
|
92 |
+
question = st.text_area("请输入问题", "Gemma 有哪些特点?")
|
93 |
+
if st.button("提交"):
|
94 |
+
if not question:
|
95 |
+
st.warning("请输入问题!")
|
96 |
+
else:
|
97 |
+
result = answer_question(gemma, float(temperature), int(max_length), question)
|
98 |
+
print('prompt: ' + result["prompt"])
|
99 |
+
print('answer: ' + result["answer"])
|
100 |
+
st.write("生成答案:")
|
101 |
+
st.write(result["answer"])
|