Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -72,44 +72,40 @@ def display_tiles(df, cols):
|
|
72 |
|
73 |
# Function to detect the format and standardize the data
|
74 |
def standardize_data(df):
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
# Standardize column names to a common format
|
82 |
df = df.rename(columns={
|
83 |
'Issued Date': 'Issued Date',
|
84 |
'Expiry Date': 'Expiry Date',
|
85 |
'Cert. No': 'Cert No',
|
86 |
-
'Company Name': 'Name',
|
87 |
'Address': 'Address',
|
88 |
-
'Region': '
|
89 |
-
'Factory Type': '
|
90 |
'Contact': 'Contact',
|
91 |
-
'Phone': '
|
92 |
'E-mail': 'E-mail',
|
93 |
'Status': 'Status',
|
94 |
'Member Since': 'Member Since'
|
95 |
})
|
96 |
-
|
97 |
-
elif
|
98 |
-
required_columns = [
|
99 |
-
'Name', 'Address', 'Tel', 'Cuisine', 'Expiry DateDD/MM/YY', 'Location', 'Restaurant Type', 'Website', 'Directions'
|
100 |
-
]
|
101 |
-
# Standardize column names to a common format
|
102 |
df = df.rename(columns={
|
103 |
-
'Name': 'Name',
|
104 |
'Address': 'Address',
|
105 |
-
'Tel': '
|
106 |
-
'Cuisine': '
|
107 |
'Expiry DateDD/MM/YY': 'Expiry Date',
|
108 |
-
'Location': '
|
109 |
-
'Restaurant Type': '
|
110 |
'Website': 'Website',
|
111 |
'Directions': 'Directions'
|
112 |
})
|
|
|
113 |
else:
|
114 |
st.error("Unsupported file format")
|
115 |
return None, []
|
@@ -230,10 +226,10 @@ else:
|
|
230 |
company_name_filter = st.text_input("Company Name contains")
|
231 |
with col2:
|
232 |
# Filter by Location
|
233 |
-
location_filter = st.multiselect("Location", df['
|
234 |
with col3:
|
235 |
# Filter by Restaurant Type
|
236 |
-
restaurant_type_filter = st.multiselect("
|
237 |
with col4:
|
238 |
# Filter by Expiry Date
|
239 |
expiry_date_filter = st.date_input("Expiry Date", [])
|
@@ -242,11 +238,11 @@ else:
|
|
242 |
filtered_df = df.copy()
|
243 |
|
244 |
if company_name_filter:
|
245 |
-
filtered_df = filtered_df[filtered_df['Name'].str.contains(company_name_filter, case=False, na=False)]
|
246 |
if location_filter:
|
247 |
-
filtered_df = filtered_df[filtered_df['
|
248 |
if restaurant_type_filter:
|
249 |
-
filtered_df = filtered_df[filtered_df['
|
250 |
if expiry_date_filter:
|
251 |
if len(expiry_date_filter) == 1:
|
252 |
filtered_df = filtered_df[filtered_df['Expiry Date'] == expiry_date_filter[0]]
|
|
|
72 |
|
73 |
# Function to detect the format and standardize the data
|
74 |
def standardize_data(df):
|
75 |
+
format_1_columns = {'Issued Date', 'Expiry Date', 'Cert. No', 'Company Name', 'Address', 'Region',
|
76 |
+
'Factory Type', 'Contact', 'Phone', 'E-mail', 'Status', 'Member Since'}
|
77 |
+
format_2_columns = {'Name', 'Address', 'Tel', 'Cuisine', 'Expiry DateDD/MM/YY', 'Location', 'Restaurant Type',
|
78 |
+
'Website', 'Directions'}
|
79 |
+
|
80 |
+
if format_1_columns.issubset(df.columns):
|
|
|
81 |
df = df.rename(columns={
|
82 |
'Issued Date': 'Issued Date',
|
83 |
'Expiry Date': 'Expiry Date',
|
84 |
'Cert. No': 'Cert No',
|
85 |
+
'Company Name': 'Company Name',
|
86 |
'Address': 'Address',
|
87 |
+
'Region': 'Region',
|
88 |
+
'Factory Type': 'Factory Type',
|
89 |
'Contact': 'Contact',
|
90 |
+
'Phone': 'Phone',
|
91 |
'E-mail': 'E-mail',
|
92 |
'Status': 'Status',
|
93 |
'Member Since': 'Member Since'
|
94 |
})
|
95 |
+
required_columns = list(format_1_columns)
|
96 |
+
elif format_2_columns.issubset(df.columns):
|
|
|
|
|
|
|
|
|
97 |
df = df.rename(columns={
|
98 |
+
'Name': 'Company Name',
|
99 |
'Address': 'Address',
|
100 |
+
'Tel': 'Phone',
|
101 |
+
'Cuisine': 'Factory Type',
|
102 |
'Expiry DateDD/MM/YY': 'Expiry Date',
|
103 |
+
'Location': 'Region',
|
104 |
+
'Restaurant Type': 'Factory Type',
|
105 |
'Website': 'Website',
|
106 |
'Directions': 'Directions'
|
107 |
})
|
108 |
+
required_columns = list(format_1_columns) # Use the same required columns for consistency
|
109 |
else:
|
110 |
st.error("Unsupported file format")
|
111 |
return None, []
|
|
|
226 |
company_name_filter = st.text_input("Company Name contains")
|
227 |
with col2:
|
228 |
# Filter by Location
|
229 |
+
location_filter = st.multiselect("Location", df['Region'].drop_duplicates())
|
230 |
with col3:
|
231 |
# Filter by Restaurant Type
|
232 |
+
restaurant_type_filter = st.multiselect("Factory Type", df['Factory Type'].drop_duplicates())
|
233 |
with col4:
|
234 |
# Filter by Expiry Date
|
235 |
expiry_date_filter = st.date_input("Expiry Date", [])
|
|
|
238 |
filtered_df = df.copy()
|
239 |
|
240 |
if company_name_filter:
|
241 |
+
filtered_df = filtered_df[filtered_df['Company Name'].str.contains(company_name_filter, case=False, na=False)]
|
242 |
if location_filter:
|
243 |
+
filtered_df = filtered_df[filtered_df['Region'].isin(location_filter)]
|
244 |
if restaurant_type_filter:
|
245 |
+
filtered_df = filtered_df[filtered_df['Factory Type'].isin(restaurant_type_filter)]
|
246 |
if expiry_date_filter:
|
247 |
if len(expiry_date_filter) == 1:
|
248 |
filtered_df = filtered_df[filtered_df['Expiry Date'] == expiry_date_filter[0]]
|