zayeem00 commited on
Commit
284d931
·
verified ·
1 Parent(s): c54e90e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +86 -59
app.py CHANGED
@@ -1,63 +1,90 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ import pandas as pd
3
+ import sqlite3
4
+ import openai
5
+ import pinecone
6
+ import chromadb
7
+ from PyPDF2 import PdfReader
8
+ from transformers import pipeline
9
+ import os
10
+ from google.colab import auth
11
+ from googleapiclient.discovery import build
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ # Initialize APIs
14
+ openai.api_key = "YOUR_OPENAI_API_KEY"
15
+ pinecone.init(api_key="YOUR_PINECONE_API_KEY", environment="us-west1-gcp")
16
+ db = chromadb.Client() # Initialize ChromaDB
17
+
18
+ # Set up Gradio interface
19
+ def initialize_models(model_choice):
20
+ if model_choice == 'OpenAI':
21
+ return {
22
+ 'embedding': openai.Embedding.create,
23
+ 'chat': openai.ChatCompletion.create
24
+ }
25
+ elif model_choice == 'HuggingFace':
26
+ embedding_model = pipeline('feature-extraction', model='bert-base-uncased')
27
+ chat_model = pipeline('conversational', model='facebook/blenderbot-400M-distill')
28
+ return {
29
+ 'embedding': embedding_model,
30
+ 'chat': chat_model
31
+ }
32
+
33
+ def fetch_pdf_from_drive(file_id):
34
+ auth.authenticate_user()
35
+ drive_service = build('drive', 'v3')
36
+ request = drive_service.files().get_media(fileId=file_id)
37
+ file = io.BytesIO(request.execute())
38
+ pdf_reader = PdfReader(file)
39
+ text = ""
40
+ for page in pdf_reader.pages:
41
+ text += page.extract_text()
42
+ return text
43
+
44
+ def query_db(query, db_type):
45
+ conn = sqlite3.connect('data.db')
46
+ cursor = conn.cursor()
47
+ if db_type == 'Pinecone':
48
+ index = pinecone.Index('your-index-name')
49
+ results = index.query(query)
50
+ return results
51
+ elif db_type == 'ChromaDB':
52
+ # Example of ChromaDB query - adapt as needed
53
+ results = db.query(query)
54
+ return results
55
+ conn.close()
56
+
57
+ def generate_response(model_choice, query, chat_history, db_type):
58
+ models = initialize_models(model_choice)
59
+ if model_choice == 'OpenAI':
60
+ response = models['chat'](model='gpt-3.5-turbo', messages=chat_history + [{'role': 'user', 'content': query}])
61
+ return response['choices'][0]['message']['content'], chat_history + [{'role': 'user', 'content': query}, {'role': 'assistant', 'content': response['choices'][0]['message']['content']}]
62
+ elif model_choice == 'HuggingFace':
63
+ response = models['chat'](query)
64
+ return response['generated_text'], chat_history + [{'role': 'user', 'content': query}, {'role': 'assistant', 'content': response['generated_text']}]
65
+
66
+ def process_input(model_choice, query, db_type, file_id):
67
+ if file_id:
68
+ pdf_text = fetch_pdf_from_drive(file_id)
69
+ query = f"{query} {pdf_text}"
70
+ response, updated_history = generate_response(model_choice, query, chat_history, db_type)
71
+ return response, updated_history
72
+
73
+ def gradio_interface():
74
+ with gr.Blocks() as demo:
75
+ with gr.Row():
76
+ model_choice = gr.Dropdown(['OpenAI', 'HuggingFace'], label='Model Choice', value='OpenAI')
77
+ db_type = gr.Dropdown(['ChromaDB', 'Pinecone'], label='Database Type', value='ChromaDB')
78
+ file_id = gr.Textbox(label='Google Drive File ID', placeholder='Enter Google Drive file ID (for PDFs)')
79
+
80
+ with gr.Row():
81
+ chat_history = gr.Chatbot()
82
+ query = gr.Textbox(label='Query')
83
+ submit_button = gr.Button('Submit')
84
+
85
+ submit_button.click(fn=process_input, inputs=[model_choice, query, db_type, file_id], outputs=[chat_history])
86
+
87
+ return demo
88
 
89
  if __name__ == "__main__":
90
+ gradio_interface().launch()