# interface.py import gradio as gr from recommendations import recommend_products, generate_contextual_message from utils import process_csv css = """ .lg.svelte-cmf5ev {background-color: #8A2BE2 !important;} .user.svelte-1pjfiar.svelte-1pjfiar.svelte-1pjfiar {padding: 7px !important;border-radius: 10px 10px 0px 10px;width: fit-content;background-color: #E6E6FA !important ;border-color:#E6E6FA !important} .bot.svelte-1pjfiar.svelte-1pjfiar.svelte-1pjfiar {padding: 7px !important;border-radius: 10px 10px 10px 0px;width : fit-content !important;border: 1.5px solid #9370DB !important;background: #FFFFFF 0% 0% no-repeat padding-box !important;box-shadow: 0px 3px 6px #0000001A !important;border: 2px solid #9370DB !important;} .primary.svelte-cmf5ev {box-shadow: 0px 3px 6px #0000001A !important;border: 2px solid #9370DB !important;background: #8A2BE2 !important;width: fit-content;} .primary.svelte-cmf5ev {color: white !important} textarea.scroll-hide.svelte-1f354aw {font-family:'Roboto','Arial',sans-serif;font-size:14px} label.svelte-1b6s6s { background: #9370DB 0% 0% no-repeat padding-box;color: white;width: 100%;} label.svelte-1b6s6s {background: #9370DB 0% 0% no-repeat padding-box;color: white;width: 100%;font-size:20px;font-family:'Roboto','Arial',sans-serif; border-radius: 0px 0px 10px 10px;} .wrapper.svelte-nab2ao{background-color : #F7F7F7 } svg.iconify.iconify--carbon{width:15px; height:15px} .thumbnail-item.svelte-fiatpe.svelte-fiatpe:hover {--ring-color: #9370DB !important;} """ default_chat = [["Welcome! I'm your AI-powered product recommendation bot. Ask me anything about finding the perfect product for you.", "I'm here to assist you with any product-related inquiries. Let's find what you need!"]] # Gradio interface functions def handle_file_upload(file, openai_api_key, pinecone_api_key, pinecone_env): return process_csv(file, openai_api_key, pinecone_api_key, pinecone_env) def display_recommendations(user_input, openai_api_key, pinecone_api_key, pinecone_env, system_prompt): recommendations = recommend_products(user_input, openai_api_key, pinecone_api_key, pinecone_env) contextual_message = generate_contextual_message(user_input, recommendations, openai_api_key, system_prompt) return recommendations, contextual_message def update_outputs(query_input, openai_api_key, pinecone_api_key, pinecone_env, chat_history, system_prompt): recommendations, contextual_message = display_recommendations(query_input, openai_api_key, pinecone_api_key, pinecone_env, system_prompt) # Update chat history new_chat_history = chat_history + [[query_input, contextual_message]] return recommendations, new_chat_history, gr.update(value="") # Create Gradio Interface def build_interface(): with gr.Blocks(title="AI Smart Shopper", head="True", css=css) as interface: gr.Markdown("""

AI Smart Shopper

""") with gr.Tab("API Keys"): openai_api_key_input = gr.Textbox(label="OpenAI API Key", type="password") pinecone_api_key_input = gr.Textbox(label="Pinecone API Key", type="password") pinecone_env_input = gr.Textbox(label="Pinecone Environment", placeholder="e.g., us-east-1") system_prompt_input = gr.Textbox(label="System Prompt", placeholder="Enter a system prompt for the assistant...") with gr.Tab("Upload Catalog"): upload_button = gr.File(label="Upload CSV", type="filepath") output = gr.Textbox() upload_button.upload(handle_file_upload, inputs=[upload_button, openai_api_key_input, pinecone_api_key_input, pinecone_env_input], outputs=output) with gr.Tab("Get Recommendations"): with gr.Row(): with gr.Column(scale=1): chatbot = gr.Chatbot(value=default_chat, label="Recommender Chatbot", show_label=True) query_input = gr.Textbox(label="Enter your product preference...", show_label=False, placeholder="Type your query here...") with gr.Row(): with gr.Column(scale=1, min_width=150): recommend_button = gr.Button("Get Recommendations") with gr.Column(scale=1, min_width=150): clear_button = gr.Button("Clear") # Define state for chat history chat_history = gr.State([]) # Define outputs with gr.Column(scale=1): recommendations_output = gr.Gallery(label="Recommendations For You", show_label=False, elem_id="gallery", columns=[3], rows=[1], object_fit="contain", height="auto", scale=5) recommend_button.click( update_outputs, inputs=[query_input, openai_api_key_input, pinecone_api_key_input, pinecone_env_input, chat_history, system_prompt_input], outputs=[recommendations_output, chatbot, query_input] ) clear_button.click( lambda: (gr.update(value=default_chat), gr.update(value=""), gr.update(value=[]), gr.update(value=[])), outputs=[chatbot, query_input, chat_history, recommendations_output] ) return interface