Spaces:
Running
Running
Upload 3 files
Browse files- app.py +37 -0
- rag_utility.py +71 -0
- requirements.txt +10 -0
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
from rag_utility import process_document_to_chromadb, answer_question
|
4 |
+
|
5 |
+
def process_and_store_file(file):
|
6 |
+
if file is not None:
|
7 |
+
working_dir = os.getcwd()
|
8 |
+
save_path = os.path.join(working_dir, os.path.basename(file))
|
9 |
+
with open(save_path, "wb") as f:
|
10 |
+
f.write(file.read())
|
11 |
+
process_document_to_chromadb(save_path)
|
12 |
+
return "Document Processed Successfully"
|
13 |
+
return "No file uploaded."
|
14 |
+
|
15 |
+
def get_answers(question):
|
16 |
+
if not question.strip():
|
17 |
+
return "Please enter a question.", "Please enter a question."
|
18 |
+
answer = answer_question(question)
|
19 |
+
return answer["answer_deepseek"], answer["answer_llama3"]
|
20 |
+
|
21 |
+
with gr.Blocks() as demo:
|
22 |
+
gr.Markdown("# π DeepSeek-R1 vs π¦ Llama-3")
|
23 |
+
with gr.Row():
|
24 |
+
file_input = gr.File(label="Upload a PDF file", file_types=[".pdf"], type="filepath")
|
25 |
+
process_button = gr.Button("Process Document")
|
26 |
+
status_output = gr.Textbox(label="Status", interactive=False)
|
27 |
+
process_button.click(process_and_store_file, inputs=file_input, outputs=status_output)
|
28 |
+
|
29 |
+
question_input = gr.Textbox(label="Ask your question from the document")
|
30 |
+
answer_button = gr.Button("Answer")
|
31 |
+
with gr.Row():
|
32 |
+
deepseek_output = gr.Markdown("### DeepSeek-r1 Response")
|
33 |
+
llama3_output = gr.Markdown("### Llama-3 Response")
|
34 |
+
|
35 |
+
answer_button.click(get_answers, inputs=question_input, outputs=[deepseek_output, llama3_output])
|
36 |
+
|
37 |
+
demo.launch()
|
rag_utility.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
|
4 |
+
from langchain_community.document_loaders import UnstructuredPDFLoader
|
5 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
6 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
7 |
+
from langchain_chroma import Chroma
|
8 |
+
from langchain_groq import ChatGroq
|
9 |
+
from langchain.chains import RetrievalQA
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
working_dir = os.path.dirname(os.path.abspath(__file__))
|
12 |
+
config_data = json.load(open(f"{working_dir}/config.json"))
|
13 |
+
load_dotenv()
|
14 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
15 |
+
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
16 |
+
|
17 |
+
|
18 |
+
# loading the embedding model
|
19 |
+
embedding = HuggingFaceEmbeddings()
|
20 |
+
|
21 |
+
# loading the Deepseek-r1 70b model
|
22 |
+
deepseek_llm = ChatGroq(
|
23 |
+
model="deepseek-r1-distill-llama-70b",
|
24 |
+
temperature=0
|
25 |
+
)
|
26 |
+
|
27 |
+
# loading the llama-3 70b model
|
28 |
+
llama3_llm = ChatGroq(
|
29 |
+
model="llama-3.3-70b-versatile",
|
30 |
+
temperature=0
|
31 |
+
)
|
32 |
+
|
33 |
+
|
34 |
+
def process_document_to_chromadb(file_name):
|
35 |
+
# document directory loader
|
36 |
+
loader = UnstructuredPDFLoader(f"{working_dir}/{file_name}")
|
37 |
+
# loading the documents
|
38 |
+
documents = loader.load()
|
39 |
+
# splitting the text into
|
40 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200)
|
41 |
+
texts = text_splitter.split_documents(documents)
|
42 |
+
vectordb = Chroma.from_documents(documents=texts,
|
43 |
+
embedding=embedding,
|
44 |
+
persist_directory=f"{working_dir}/doc_vectorstore")
|
45 |
+
return 0
|
46 |
+
|
47 |
+
|
48 |
+
def answer_question(user_question):
|
49 |
+
# load the persisted database from disk, and use it as normal.
|
50 |
+
vectordb = Chroma(persist_directory=f"{working_dir}/doc_vectorstore",
|
51 |
+
embedding_function=embedding)
|
52 |
+
# retriever
|
53 |
+
retriever = vectordb.as_retriever()
|
54 |
+
|
55 |
+
# create the chain to answer questions - deepseek-r1
|
56 |
+
qa_chain_deepseek = RetrievalQA.from_chain_type(llm=deepseek_llm,
|
57 |
+
chain_type="stuff",
|
58 |
+
retriever=retriever,
|
59 |
+
return_source_documents=True)
|
60 |
+
response_deepseek = qa_chain_deepseek.invoke({"query": user_question})
|
61 |
+
answer_deepseek = response_deepseek["result"]
|
62 |
+
|
63 |
+
# create the chain to answer questions - llama3
|
64 |
+
qa_chain_llama3 = RetrievalQA.from_chain_type(llm=llama3_llm,
|
65 |
+
chain_type="stuff",
|
66 |
+
retriever=retriever,
|
67 |
+
return_source_documents=True)
|
68 |
+
response_llama3 = qa_chain_llama3.invoke({"query": user_question})
|
69 |
+
answer_llama3 = response_llama3["result"]
|
70 |
+
|
71 |
+
return {"answer_deepseek": answer_deepseek, "answer_llama3": answer_llama3}
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain-community==0.3.16
|
2 |
+
langchain==0.3.16
|
3 |
+
langchain-huggingface==0.1.2
|
4 |
+
langchain-text-splitters==0.3.5
|
5 |
+
unstructured==0.16.16
|
6 |
+
unstructured[pdf]==0.16.16
|
7 |
+
langchain-unstructured==0.1.6
|
8 |
+
langchain-chroma==0.2.1
|
9 |
+
langchain-groq==0.2.3
|
10 |
+
gradio>=4.0.0
|