Spaces:
Runtime error
Runtime error
File size: 16,234 Bytes
c9fb0e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import gradio as gr
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
from sentence_transformers import SentenceTransformer, util
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import re
import traceback
import torch
import os
from sentence_transformers import SentenceTransformer, util
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import re
import pandas as pd
import json
# Preprocessing text by lowercasing, removing punctuation, and extra spaces
def optimized_preprocess_text(text):
text = text.lower()
text = re.sub(r'[^\w\s]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
# Compute cosine similarity between two texts using TF-IDF
def optimized_compute_text_similarity(text1, text2):
tfidf = TfidfVectorizer(stop_words='english', ngram_range=(1, 1))
tfidf_matrix = tfidf.fit_transform([text1, text2])
cosine_sim = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2]).flatten()
return cosine_sim[0]
# Compute SBERT similarity between question and context
def compute_sbert_similarity(question, context, model):
embeddings = model.encode([question, context], convert_to_tensor=True)
similarity = util.pytorch_cos_sim(embeddings[0], embeddings[1]).item()
return similarity
# Use hybrid approach: TF-IDF to narrow down top N contexts, then SBERT for refined similarity
def hybrid_sbert_approach(question, filtered_contexts, model, top_n=10):
tfidf = TfidfVectorizer(stop_words='english')
contexts_combined = [question] + filtered_contexts
tfidf_matrix = tfidf.fit_transform(contexts_combined)
# Calculate TF-IDF similarity and rank contexts
similarity_scores = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:]).flatten()
ranked_contexts = [filtered_contexts[i] for i in similarity_scores.argsort()[::-1][:top_n]]
# Refine using SBERT
sbert_similarities = [compute_sbert_similarity(question, context, model) for context in ranked_contexts]
ranked_by_sbert = sorted(zip(ranked_contexts, sbert_similarities), key=lambda x: x[1], reverse=True)
return [context for context, _ in ranked_by_sbert]
# RAG with optimized SBERT function
def optimized_generate_rag_context(question, filtered_contexts, selected_context_window=2):
hybrid_retrieved_contexts = hybrid_sbert_approach(question, filtered_contexts, sbert_model, top_n=int(selected_context_window))
rag_context = "\n".join(hybrid_retrieved_contexts[:selected_context_window])
return rag_context
# Extract unique contexts and filter them by length
def extract_and_filter_contexts(data, min_length=151, max_length=3706):
unique_contexts = data['context'].unique()
filtered_contexts = [context for context in unique_contexts if min_length <= len(context) <= max_length]
return filtered_contexts
# Compute the TF-IDF matrix for the question and contexts
def compute_tfidf_and_similarity_scores(question, contexts):
tfidf = TfidfVectorizer(stop_words='english')
contexts_combined = [question] + contexts
tfidf_matrix = tfidf.fit_transform(contexts_combined)
# Calculate the cosine similarity scores
similarity_scores = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:]).flatten()
return tfidf_matrix, similarity_scores
# Rank contexts based on similarity scores
def rank_contexts_by_similarity(contexts, similarity_scores):
ranked_indices = similarity_scores.argsort()[::-1]
ranked_contexts = [contexts[i] for i in ranked_indices]
ranked_scores = similarity_scores[ranked_indices]
return ranked_contexts, ranked_scores
# Select the top contexts based on the selected window
def select_top_contexts(selected_context_window, ranked_contexts, ranked_scores):
count = int(selected_context_window)
top_contexts = ranked_contexts[:count]
top_scores = ranked_scores[:count]
return top_contexts, top_scores
# Helper function to maintain chat history and generate the response
def maintain_chat_history(message, chat_history):
if chat_history is None:
chat_history = []
chat_history.append({"role": "user", "content": message})
return chat_history
def generate_rag_context(question, filtered_contexts, selected_context_window = 3):
tfidf_matrix, similarity_scores = compute_tfidf_and_similarity_scores(question, filtered_contexts)
ranked_contexts, ranked_scores = rank_contexts_by_similarity(filtered_contexts, similarity_scores)
top_contexts, top_scores = select_top_contexts(str(selected_context_window), ranked_contexts, ranked_scores)
rag_context = "\n".join(top_contexts)
return rag_context
def load_squad_data(filepath):
with open(filepath, 'r') as f:
squad_data = json.load(f)
return squad_data
# Preprocess the data: extract contexts, questions, and answers from the SQuAD data
def raw_preprocess_data(squad_data):
contexts = []
questions = []
answers = []
for group in squad_data['data']:
for passage in group['paragraphs']:
context = passage['context']
for qa in passage['qas']:
question = qa['question']
for answer in qa['answers']:
contexts.append(context)
questions.append(question)
# Make a copy to avoid modifying the original answer
answers.append({
'text': answer['text'],
'answer_start': answer['answer_start']
})
return contexts, questions, answers
# Add the end index of the answer in the context
def add_end_idx(answers, contexts):
for answer, context in zip(answers, contexts):
gold_text = answer['text']
start_idx = answer['answer_start']
end_idx = start_idx + len(gold_text)
if context[start_idx:end_idx] == gold_text:
answer['answer_end'] = end_idx
else:
# Try to find the correct position if there's a mismatch
for n in range(1, 30):
if context[start_idx - n:end_idx - n] == gold_text:
answer['answer_start'] = start_idx - n
answer['answer_end'] = end_idx - n
break
elif context[start_idx + n:end_idx + n] == gold_text:
answer['answer_start'] = start_idx + n
answer['answer_end'] = end_idx + n
break
else:
answer['answer_start'] = -1
answer['answer_end'] = -1
# Create a DataFrame from the contexts, questions, and answers
def create_dataframe(contexts, questions, answers):
data = pd.DataFrame({
'context': contexts,
'question': questions,
'answer_text': [answer['text'] for answer in answers],
'answer_start': [answer['answer_start'] for answer in answers],
'answer_end': [answer.get('answer_end', -1) for answer in answers]
})
# Remove samples with -1 start index
data = data[data['answer_start'] != -1].reset_index(drop=True)
return data
# Check if a GPU (CUDA) is available; otherwise, use the CPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Loading the pre-trained SBERT model globally for efficiency
sbert_model = SentenceTransformer('all-MiniLM-L6-v2')
# Available models
electra_models = [
"./models/fine_tuned_electra_model_1000",
"./models/fine_tuned_electra_model_20000",
"./models/fine_tuned_electra_model_5000",
"./models/fine_tuned_electra_model_all"
]
other_models = [
"./models/fine_tuned_bert_base_cased_1000",
"./models/fine_tuned_bert_base_cased_all",
"./models/fine_tuned_distilbert_base_uncased_10000",
"./models/fine_tuned_distilgpt2_10000",
"./models/fine_tuned_retro-reader_intensive_1000",
"./models/fine_tuned_retro-reader_intensive_5000",
"./models/fine_tuned_retro-reader_sketchy_1000"
]
DATA_DIR = './data'
# Load and preprocess data
squad_data = load_squad_data(DATA_DIR+ '/train-v1.1.json')
contexts, questions, answers = raw_preprocess_data(squad_data)
add_end_idx(answers, contexts)
data = create_dataframe(contexts, questions, answers)
# Function to generate a response with logging and custom content
def generate_response(message, chat_history, model_name, debug, rag, selected_context_window):
try:
if chat_history is None:
chat_history = []
context = message
# Determine if the model is for question answering based on its name
is_question_answering = "electra_model" in model_name
# Initialize the tokenizer and model
if is_question_answering:
model = pipeline("question-answering", model=model_name, tokenizer=model_name, device=device)
else:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
model.to(device)
# Append the new user message to the chat history
chat_history.append({"role": "user", "content": message})
if is_question_answering:
if rag:
filtered_contexts = extract_and_filter_contexts(data, min_length=100, max_length=4000)
context = generate_rag_context(message, filtered_contexts, selected_context_window)
else:
context = "\n".join([turn["content"] for turn in chat_history if turn["role"] == "user"])
if debug:
print("context:\n" + context)
print("message:\n" + message)
# Call the pipeline for question-answering
answer = model(question=message, context=context)
response = answer['answer']
else:
# Prepare the conversation history for a regular chatbot
conversation = ""
for turn in chat_history:
if turn["role"] == "user":
conversation += f"User: {turn['content']}\n"
else:
conversation += f"Assistant: {turn['content']}\n"
if debug:
print("Conversation being sent to the model:\n", conversation)
# Encode the input and generate a response
inputs = tokenizer.encode(conversation + "Assistant:", return_tensors='pt').to(device)
outputs = model.generate(
inputs,
max_length=inputs.shape[1] + 100,
pad_token_id=tokenizer.eos_token_id,
do_sample=True,
top_p=0.95,
top_k=50,
temperature=0.7,
eos_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract the assistant's reply
response = response[len(conversation):].strip()
if "User:" in response:
response = response.split("User:")[0].strip()
# Append the assistant's response to the chat history
chat_history.append({"role": "assistant", "content": response})
if debug:
print("Generated response:", response)
print("Configurations:")
print(f"Model Name: {model_name}")
print(f"Is Question Answering: {is_question_answering}")
print(f"RAG Enabled: {rag}")
print(f"Selected Context Window: {selected_context_window}")
# Return the updated chat history and the assistant's response
display_history = [[turn["content"], chat_history[i + 1]["content"]] for i, turn in enumerate(chat_history[:-1]) if turn["role"] == "user" and i + 1 < len(chat_history)]
return display_history, chat_history
except Exception as e:
# Capture the traceback details
error_message = f"An error occurred: {str(e)}"
detailed_error = traceback.format_exc()
chat_history.append({"role": "assistant", "content": error_message})
if debug:
print("Error Details:\n", detailed_error)
# Ensure safe generation of the display history
try:
display_history = [[turn["content"], chat_history[i + 1]["content"]] for i, turn in enumerate(chat_history[:-1]) if turn["role"] == "user" and i + 1 < len(chat_history)]
except Exception as history_error:
if debug:
print("Error while generating display history:", str(history_error))
display_history = []
return display_history, chat_history
# Gradio Interface Configuration
def run_prod_chatbot(local=True):
with gr.Blocks() as demo:
gr.Markdown("""
<div style="text-align: center;">
<h1><strong>SQuAD Q&A ChatBot</strong></h1>
<h3>Authors: <a href="https://github.com/zainnobody">Zain Ali</a> & <a href="https://github.com/AIBenHopwood/">Ben Hopwood</a></h3>
<p>
<a href="https://github.com/zainnobody/AAI-520-Final-Project" target="_blank">Code: GitHub link</a> |
<a href="https://huggingface.co/zainnobody/AAI-520-Final-Project-Models" target="_blank">Models: Huggingface link</a>
</p>
</div>
<div style="text-align: center;">
<p>
This project aims to develop a chatbot capable of multi-turn, context-adaptive conversations across various topics, using the Stanford Question Answering Dataset (SQuAD) as the primary source for training.
</p>
</div>
<div style="text-align: center;">
<h4>University of San Diego - AAI 520</h4>
</div>
""")
with gr.Row(variant="compact"):
model_dropdown = gr.Dropdown(
choices=electra_models + other_models,
label="Select Model",
value="./models/fine_tuned_electra_model_all"
)
# Column for Use RAG and Debug Mode checkboxes
with gr.Column():
rag_checkbox = gr.Checkbox(
label="Use RAG",
value=True,
interactive=True
)
debug_checkbox = gr.Checkbox(
label="Debug Mode",
value=False
)
context_window_dropdown = gr.Dropdown(
choices=[1, 2, 3],
label="Select Context Window",
value=1
)
# Commented out the is_question_answering_checkbox, making it auto detectable. Leaving this as a reminder that other models do not use pipeline
# is_question_answering_checkbox = gr.Checkbox(
# label="Use Question Answering (Electra Only)",
# value=True
# )
chatbot = gr.Chatbot()
state = gr.State([])
with gr.Row():
# Textbox taking 75% of the space
msg = gr.Textbox(label="Your message", placeholder="Type your message here and press Enter", scale=3)
# Send button taking 25% of the space and stretching full width
send_btn = gr.Button("Send", scale=1)
send_btn.click(lambda message, chat_history, model_name, debug, rag, selected_context_window: generate_response(message, chat_history, model_name, debug, rag, selected_context_window),
inputs=[msg, state, model_dropdown, debug_checkbox, rag_checkbox, context_window_dropdown],
outputs=[chatbot, state])
msg.submit(lambda message, chat_history, model_name, debug, rag, selected_context_window: generate_response(message, chat_history, model_name, debug, rag, selected_context_window),
inputs=[msg, state, model_dropdown, debug_checkbox, rag_checkbox, context_window_dropdown],
outputs=[chatbot, state])
if local:
demo.launch(share=True)
else:
demo.launch(server_name="0.0.0.0", server_port=None)
# Launch the Gradio app
run_prod_chatbot() |