File size: 2,503 Bytes
e574c29
 
 
 
 
 
5b90165
e574c29
7ffbf80
 
 
 
 
 
 
 
 
e574c29
 
 
 
 
 
 
 
 
7ffbf80
 
e574c29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ffbf80
e574c29
 
 
 
 
 
 
 
 
 
 
 
 
7ffbf80
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import gradio as gr
from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("microsoft/Phi-3.5-mini-instruct")

# Specialized prompt for the system message
ophthalmology_prompt = (
    "Act as an experienced ophthalmologist with extensive knowledge in clinical diagnosis, "
    "surgical treatments, and current research trends. Explain your answers with detailed insights "
    "and clear medical terminology, providing up-to-date information and guidance. When appropriate, "
    "outline differential diagnoses, treatment options, or advanced procedural steps. Additionally, "
    "summarize any relevant clinical studies or guidelines that support your responses, making sure to "
    "keep explanations clear and tailored to both professionals and non-specialists."
)

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    # Set the system message to the ophthalmology prompt
    system_message = ophthalmology_prompt if not system_message else system_message
    messages = [{"role": "system", "content": system_message}]

    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})

    messages.append({"role": "user", "content": message})

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content
        response += token
        yield response

"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value=ophthalmology_prompt, label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()