import gradio as gr import copy import time import ctypes #to run on C api directly import llama_cpp from llama_cpp import Llama from huggingface_hub import hf_hub_download #load from huggingfaces llm = Llama(model_path= hf_hub_download(repo_id="TheBloke/Dolphin-Llama2-7B-GGML", filename="dolphin-llama2-7b.ggmlv3.q4_1.bin"), n_ctx=2048) #download model from hf/ n_ctx=2048 for high ccontext length history = [] pre_prompt = " The user and the AI are having a conversation : <|endoftext|> \n " def generate_text(input_text, history): print("history ",history) print("input ", input_text) temp ="" if history == []: input_text_with_history = f"SYSTEM:{pre_prompt}"+ "\n" + f"USER: {input_text} " + "\n" +" ASSISTANT:" else: input_text_with_history = f"{history[-1][1]}"+ "\n" input_text_with_history += f"USER: {input_text}" + "\n" +" ASSISTANT:" print("new input", input_text_with_history) output = llm(input_text_with_history, max_tokens=1024, stop=["<|prompter|>", "<|endoftext|>", "<|endoftext|> \n","ASSISTANT:","USER:","SYSTEM:"], stream=True) for out in output: stream = copy.deepcopy(out) print(stream["choices"][0]["text"]) temp += stream["choices"][0]["text"] yield temp history =["init",input_text_with_history] demo = gr.ChatInterface(generate_text, title="LLM on CPU", description="Running LLM with https://github.com/abetlen/llama-cpp-python. btw the text streaming thing was the hardest thing to impliment", examples=["Hello", "Am I cool?", "Are tomatoes vegetables?"], cache_examples=True, retry_btn=None, undo_btn="Delete Previous", clear_btn="Clear",) demo.queue(concurrency_count=1, max_size=5) demo.launch()