import os import json import logging import typing as t import gradio as gr from huggingface_hub import InferenceClient logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s", ) logger = logging.getLogger(__name__) HF_API_TOKEN = os.getenv("HF_API_TOKEN") MODEL_REPO_ID= "google/gemma-2-9b-it" if HF_API_TOKEN is None: logger.error("HF_API_TOKEN environment variable is not set.") raise ValueError("Error: HF_API_TOKEN environment variable is not set.") def build_messages(input_json: str) -> t.Sequence[t.Mapping[str, str]]: data_structure = ( "You are given a restaurant menu in Spanish. You MUST return a single valid JSON in this format:\n" "Menu Format:\n" " ::= '{' \"restaurant_name\": , \"categories\": [ * ] '}'\n" " ::= '{' \"category\": , \"items\": [ * ] '}'\n" " ::= '{' \"name\": , \"price\": , \"description\": }'\n" ) instructions = ( "Requirements:\n" "1. **Translate ALL Spanish text into English**, including:\n" " - restaurant_name (only if it's in Spanish).\n" " - All category names.\n" " - All item names.\n" " - Any Spanish words in the final descriptions.\n\n" "2. If an item name is a distinct dish with no direct English equivalent, " " **still attempt** an English literal translation, or provide a parenthetical explanation if needed.\n\n" "3. For every item, add a new field called description in **concise, appetizing English**.\n\n" "4. **Do not** change or remove existing fields. The only added field is description.\n\n" "5. **Do not** change meaning or make up information." "6. Return **only** the JSON object. **No markdown**, no code fences, no extra text.\n" "7. Ensure the output is **valid JSON** with correct brackets, commas, and quotes.\n\n" ) system_message = data_structure + instructions user_message = ( "Process the following menu:\n\n" f"{input_json}" ) return [ {"role": "user", "content": system_message + user_message}, ] def process_menu(input_text: str) -> str: client = InferenceClient(model=MODEL_REPO_ID, token=HF_API_TOKEN) messages = build_messages(input_text) logger.info("Generating response from the model.") response = client.chat_completion( messages, max_tokens=2048, temperature=0.1, seed=42, ) if response is not None and response.choices is not None: content = response.choices[0].message.content logger.info(response) logger.info(content) parsed = json.loads(content) logger.info("Parsed JSON successfully.") return json.dumps(parsed, indent=2, ensure_ascii=False) def process_data(data: t.Any) -> str: logger.info("Reading input file: %s", data) input_name = os.path.basename(data) preprocessed_name = "preprocessed_" + input_name with open(data, "r", encoding="utf-8") as raw_data: menu = raw_data.read() logger.info("Processing the menu data through the model.") preprocessed_data = process_menu(menu) logger.info("Writing preprocessed data to file: %s", preprocessed_name) with open(preprocessed_name, "w", encoding="utf-8") as temp_data: temp_data.write(preprocessed_data) logger.info("Processing complete. Preprocessed file created: %s", preprocessed_name) return preprocessed_name with gr.Blocks() as demo: gr.Markdown("# Restaurant Menu Processor") gr.Markdown( "Upload a JSON file containing a restaurant menu in Spanish. " "This tool will translate the menu into English and add descriptions." ) with gr.Row(): input_file = gr.File(label="Upload Restaurant Menu JSON (Spanish)") output_file = gr.File(label="Download Augmented Menu JSON (English)") process_button = gr.Button("Process Menu") process_button.click(process_data, inputs=input_file, outputs=output_file) demo.launch()