File size: 8,948 Bytes
1af48fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52bcfe4
1af48fa
 
52bcfe4
1af48fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52bcfe4
1af48fa
52bcfe4
1af48fa
 
 
 
 
 
 
 
 
 
 
 
 
 
c405f98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1af48fa
c405f98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e09244d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c405f98
 
 
 
 
52bcfe4
c405f98
52bcfe4
c405f98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e09244d
 
 
 
c405f98
e09244d
 
 
 
 
 
 
c405f98
 
 
 
1af48fa
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from models import RequestModel

async def get_image_message(base64_image, engine = None):
    if "gpt" == engine:
        return {
            "type": "image_url",
            "image_url": {
                "url": base64_image,
            }
        }
    if "claude" == engine:
        return {
            "type": "image",
            "source": {
                "type": "base64",
                "media_type": "image/jpeg",
                "data": base64_image.split(",")[1],
            }
        }
    if "gemini" == engine:
        return {
            "inlineData": {
                "mimeType": "image/jpeg",
                "data": base64_image.split(",")[1],
            }
        }
    raise ValueError("Unknown engine")

async def get_text_message(role, message, engine = None):
    if "gpt" == engine or "claude" == engine:
        return {"type": "text", "text": message}
    if "gemini" == engine:
        return {"text": message}
    raise ValueError("Unknown engine")

async def get_gemini_payload(request, engine, provider):
    headers = {
        'Content-Type': 'application/json'
    }
    url = provider['base_url']
    model = provider['model'][request.model]
    if request.stream:
        gemini_stream = "streamGenerateContent"
    url = url.format(model=model, stream=gemini_stream, api_key=provider['api'])

    messages = []
    for msg in request.messages:
        if isinstance(msg.content, list):
            content = []
            for item in msg.content:
                if item.type == "text":
                    text_message = await get_text_message(msg.role, item.text, engine)
                    # print("text_message", text_message)
                    content.append(text_message)
                elif item.type == "image_url":
                    image_message = await get_image_message(item.image_url.url, engine)
                    content.append(image_message)
        else:
            content = msg.content
        if msg.role != "system":
            messages.append({"role": msg.role, "parts": content})


    payload = {
        "contents": messages,
        "safetySettings": [
            {
                "category": "HARM_CATEGORY_HARASSMENT",
                "threshold": "BLOCK_NONE"
            },
            {
                "category": "HARM_CATEGORY_HATE_SPEECH",
                "threshold": "BLOCK_NONE"
            },
            {
                "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
                "threshold": "BLOCK_NONE"
            },
            {
                "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                "threshold": "BLOCK_NONE"
            }
        ]
    }

    miss_fields = [
        'model',
        'messages',
        'stream',
        'tools',
        'tool_choice',
        'temperature',
        'top_p',
        'max_tokens',
        'presence_penalty',
        'frequency_penalty',
        'n',
        'user',
        'include_usage',
        'logprobs',
        'top_logprobs'
    ]

    for field, value in request.model_dump(exclude_unset=True).items():
        if field not in miss_fields and value is not None:
            payload[field] = value

    return url, headers, payload

async def get_gpt_payload(request, engine, provider):
    headers = {
        'Authorization': f"Bearer {provider['api']}",
        'Content-Type': 'application/json'
    }
    url = provider['base_url']

    messages = []
    for msg in request.messages:
        if isinstance(msg.content, list):
            content = []
            for item in msg.content:
                if item.type == "text":
                    text_message = await get_text_message(msg.role, item.text, engine)
                    content.append(text_message)
                elif item.type == "image_url":
                    image_message = await get_image_message(item.image_url.url, engine)
                    content.append(image_message)
        else:
            content = msg.content
            name = msg.name
        if name:
            messages.append({"role": msg.role, "name": name, "content": content})
        else:
            messages.append({"role": msg.role, "content": content})

    model = provider['model'][request.model]
    payload = {
        "model": model,
        "messages": messages,
    }

    miss_fields = [
        'model',
        'messages'
    ]

    for field, value in request.model_dump(exclude_unset=True).items():
        if field not in miss_fields and value is not None:
            payload[field] = value

    return url, headers, payload

async def gpt2claude_tools_json(json_dict):
    import copy
    json_dict = copy.deepcopy(json_dict)
    keys_to_change = {
        "parameters": "input_schema",
    }
    for old_key, new_key in keys_to_change.items():
        if old_key in json_dict:
            if new_key:
                json_dict[new_key] = json_dict.pop(old_key)
            else:
                json_dict.pop(old_key)
    # if "tools" in json_dict.keys():
    #     json_dict["tool_choice"] = {
    #         "type": "auto"
    #     }
    return json_dict

async def get_claude_payload(request, engine, provider):
    headers = {
        "content-type": "application/json",
        "x-api-key": f"{provider['api']}",
        "anthropic-version": "2023-06-01",
        "anthropic-beta": "tools-2024-05-16"
    }
    url = provider['base_url']

    messages = []
    for msg in request.messages:
        if isinstance(msg.content, list):
            content = []
            for item in msg.content:
                if item.type == "text":
                    text_message = await get_text_message(msg.role, item.text, engine)
                    content.append(text_message)
                elif item.type == "image_url":
                    image_message = await get_image_message(item.image_url.url, engine)
                    content.append(image_message)
        else:
            content = msg.content
            name = msg.name
        if name:
            # messages.append({"role": "assistant", "name": name, "content": content})
            messages.append(
                {
                    "role": "assistant",
                    "content": [
                        {
                            "type": "tool_use",
                            "id": "toolu_01RofFmKHUKsEaZvqESG5Hwz",
                            "name": name,
                            "input": {"text": messages[-1]["content"][0]["text"]},
                        }
                    ]
                }
            )
            messages.append(
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "tool_result",
                            "tool_use_id": "toolu_01RofFmKHUKsEaZvqESG5Hwz",
                            "content": content
                        }
                    ]
                }
            )
        elif msg.role != "system":
            messages.append({"role": msg.role, "content": content})
        elif msg.role == "system":
            system_prompt = content

    model = provider['model'][request.model]
    payload = {
        "model": model,
        "messages": messages,
        "system": system_prompt,
    }
    # json_post = {
    #     "model": model or self.engine,
    #     "messages": self.conversation[convo_id] if pass_history else [{
    #         "role": "user",
    #         "content": prompt
    #     }],
    #     "temperature": kwargs.get("temperature", self.temperature),
    #     "top_p": kwargs.get("top_p", self.top_p),
    #     "max_tokens": model_max_tokens,
    #     "stream": True,
    # }

    miss_fields = [
        'model',
        'messages',
        'presence_penalty',
        'frequency_penalty',
        'n',
        'user',
        'include_usage',
    ]

    for field, value in request.model_dump(exclude_unset=True).items():
        if field not in miss_fields and value is not None:
            payload[field] = value

    if request.tools:
        tools = []
        for tool in request.tools:
            print("tool", type(tool), tool)

            json_tool = await gpt2claude_tools_json(tool.dict()["function"])
            tools.append(json_tool)
        payload["tools"] = tools
        if "tool_choice" in payload:
            payload["tool_choice"] = {
                "type": "auto"
            }
    import json
    print("payload", json.dumps(payload, indent=2, ensure_ascii=False))

    return url, headers, payload

async def get_payload(request: RequestModel, engine, provider):
    if engine == "gemini":
        return await get_gemini_payload(request, engine, provider)
    elif engine == "claude":
        return await get_claude_payload(request, engine, provider)
    elif engine == "gpt":
        return await get_gpt_payload(request, engine, provider)
    else:
        raise ValueError("Unknown payload")