from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() # cell learn = load_learner('model2.pkl') # cell categories = ['Dog', 'Cat'] def classify_image(img): pred,idx,probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # cell #image = gr.inputs.image(shape=(192, 192)) #label = gr.outputs.Label() #examples = ['dog.jpg', 'cat.jpg', 'dunno.jpg'] intf = gr.Interface(fn=classify_image, inputs="image", outputs="label") #intf = gr.Interface(fn=classify_image, inputs="image", outputs="label", examples="examples") intf.launch(inline=False) #cell #import gradio as gr #gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True)