import gradio as gr import numpy as np import requests import base64 import os API_ENDPOINT = os.getenv('API_ENDPOINT') API_KEY = os.getenv('API_KEY') # setup gallery = gr.Gallery(label="Rendered Image", show_label=False, elem_id="gallery").style(grid=[1], height="auto") # infer def infer(latex): formula = latex data = {'formula': formula, 'api_key': API_KEY} with requests.post(url=API_ENDPOINT, data=data, timeout=600, stream=True) as r: i = 0 for line in r.iter_lines(): response = line.decode('ascii').strip() r = base64.decodebytes(response.encode('ascii')) q = np.frombuffer(r, dtype=np.float32).reshape((64, 320, 3)) i += 1 yield i, [q,] title = "Markup-to-Image Diffusion Models with Scheduled Sampling" description="Yuntian Deng, Noriyuki Kojima, Alexander M. Rush" # launch gr.Interface(fn=infer, inputs=["text"], outputs=[gr.Slider(0, 1000, value=0, label='step (out of 1000)'), gallery],title=title,description=description).queue(max_size=100).launch(enable_queue=True)