import base64 import io import random from textwrap import dedent import gradio as gr from openai import OpenAI from PIL import Image from pydantic import BaseModel from prompts import ( concept_generation_system_prompt, data_processing_generation_system_prompt, evaluator_system_prompt, fusion_generation_system_prompt, question_bias_generation_system_prompt, reasoning_generation_system_prompt, refine_system_prompt_concept, refine_system_prompt_data, refine_system_prompt_question_bias, refine_system_prompt_reason, refine_system_prompt_visual, refiner_system_prompt, review_system_prompt, visual_interpretation_generation_system_prompt, ) class Distractor(BaseModel): text: str reason: str class Distractors(BaseModel): distractors: list[Distractor] class Comment(BaseModel): option: str comment: str class CommentFormat(BaseModel): comments: list[Comment] class Judgement(BaseModel): reasoning: str correctness: int improvement: str class Question(BaseModel): reasoning: str distractors: list[str] def base64_to_image(base64_str): image_data = base64.b64decode(base64_str) image = Image.open(io.BytesIO(image_data)) return image def get_reply(client, system_prompt, user_prompt, image_base64, output_format): completion = client.beta.chat.completions.parse( model="gpt-4o", messages=[ {"role": "system", "content": dedent(system_prompt)}, { "role": "user", "content": [ {"type": "text", "text": dedent(user_prompt)}, { "type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}, }, ], }, ], response_format=output_format, # temperature=0, # Set to 0 for deterministic responses ) parsed_output = completion.choices[0].message.parsed.dict() return parsed_output def convert_to_multi_choice(client, question, answer, image_base64, reviewer): user_prompt = f""" Question: {question} Correct Answer: {answer} """ distractors_concept = get_reply( client, concept_generation_system_prompt, user_prompt, image_base64, Distractors )["distractors"] distractors_reasoning = get_reply( client, reasoning_generation_system_prompt, user_prompt, image_base64, Distractors, )["distractors"] distractors_visual_interpretation = get_reply( client, visual_interpretation_generation_system_prompt, user_prompt, image_base64, Distractors, )["distractors"] distractors_data_processing = get_reply( client, data_processing_generation_system_prompt, user_prompt, image_base64, Distractors, )["distractors"] distractors_question_bias = get_reply( client, question_bias_generation_system_prompt, user_prompt, image_base64, Distractors, )["distractors"] # print(distractors_concept) if reviewer: user_prompt = """ Question: {question} Correct Answer: {answer} Distractions and Reasonings: {distractors} """ reviews_concept = get_reply( client, review_system_prompt.format(type="conceptual"), user_prompt.format( question=question, answer=answer, distractors=distractors_concept ), image_base64, CommentFormat, )["comments"] reviews_reasoning = get_reply( client, review_system_prompt.format(type="reasoning"), user_prompt.format( question=question, answer=answer, distractors=distractors_reasoning ), image_base64, CommentFormat, )["comments"] reviews_visual_interpretation = get_reply( client, review_system_prompt.format(type="visual interpretation"), user_prompt.format( question=question, answer=answer, distractors=distractors_visual_interpretation, ), image_base64, CommentFormat, )["comments"] reviews_data_processing = get_reply( client, review_system_prompt.format(type="data processing"), user_prompt.format( question=question, answer=answer, distractors=distractors_data_processing, ), image_base64, CommentFormat, )["comments"] reviews_question_bias = get_reply( client, review_system_prompt.format(type="question bias"), user_prompt.format( question=question, answer=answer, distractors=distractors_question_bias ), image_base64, CommentFormat, )["comments"] # print(reviews_concept) user_prompt = """ Question: {question} Correct Answer: {answer} Distractions and Reviewer Comments: {reviews} """ distractors_concept = get_reply( client, refine_system_prompt_concept, user_prompt.format( question=question, answer=answer, reviews=reviews_concept ), image_base64, Distractors, )["distractors"] distractors_reasoning = get_reply( client, refine_system_prompt_reason, user_prompt.format( question=question, answer=answer, reviews=reviews_reasoning ), image_base64, Distractors, )["distractors"] distractors_visual_interpretation = get_reply( client, refine_system_prompt_visual, user_prompt.format( question=question, answer=answer, reviews=reviews_visual_interpretation ), image_base64, Distractors, )["distractors"] distractors_data_processing = get_reply( client, refine_system_prompt_data, user_prompt.format( question=question, answer=answer, reviews=reviews_data_processing ), image_base64, Distractors, )["distractors"] distractors_question_bias = get_reply( client, refine_system_prompt_question_bias, user_prompt.format( question=question, answer=answer, reviews=reviews_question_bias ), image_base64, Distractors, )["distractors"] # print(distractors_concept) distractors = ( distractors_concept + distractors_reasoning + distractors_visual_interpretation + distractors_data_processing + distractors_question_bias ) user_prompt = f""" Question: {question} Correct Answer: {answer} All Distractors: {distractors} """ distractors = get_reply( client, fusion_generation_system_prompt, user_prompt, image_base64, Distractors )["distractors"] return distractors def judge_multichoice_correctness_with_image( client, question, choices, answer, image_base64 ): user_prompt = f""" Question: {question} Choices: {choices} Correct Answer: {answer} """ response = get_reply( client, evaluator_system_prompt, user_prompt, image_base64, Judgement, ) return response def improve_multichoice_correctness_with_image( client, question, choices, answer, issue, improvement, image_base64, ): user_prompt = f""" Question: {question} Choices: {choices} Correct Answer: {answer} Identified Issues: {issue} Suggested Improvements: {improvement} """ response = get_reply( client, refiner_system_prompt, user_prompt, image_base64, Question, ) return response def process_one_question(api_key, image, question, answer, components): reviewer = "Reviewer" in components refiner = "Refiner" in components pil_image = Image.fromarray(image) buffer = io.BytesIO() pil_image.save(buffer, format="PNG") buffer.seek(0) image_base64 = base64.b64encode(buffer.read()).decode("utf-8") random.seed(1234) client = OpenAI(api_key=api_key) distactors = convert_to_multi_choice( client, question, answer, image_base64, reviewer ) choices = [item["text"] for item in distactors] + [answer] random.shuffle(choices) if refiner: judgement = judge_multichoice_correctness_with_image( client, question, choices, answer, image_base64 ) distractors = improve_multichoice_correctness_with_image( client, question, choices, answer, judgement["reasoning"], judgement["improvement"], image_base64, ) choices = distractors["distractors"] + [answer] random.shuffle(choices) output = f"Question: {question}\n\nA. {choices[0]}\nB.{choices[1]}\nC. {choices[2]}\nD. {choices[3]}\n\nAnswer: {'ABCD'[choices.index(answer)]}" return output def main_gradio(): interface = gr.Interface( fn=process_one_question, inputs=[ gr.Textbox(label="OpenAI API Key"), gr.Image(label="Upload an Image"), gr.Textbox(label="Question"), gr.Textbox(label="Answer"), gr.CheckboxGroup(["Reviewer", "Refiner"], label="Components"), ], outputs=gr.Textbox(label="Output"), title="AutoConverter: Automated Generation of Challenging Multiple-Choice Questions for Vision Language Model Evaluation", ) interface.launch() if __name__ == "__main__": main_gradio()