import os import time #os.environ["CUDA_VISIBLE_DEVICES"] = "0,1" import gradio as gr import argparse from model.ea_model import EaModel import torch from fastchat.model import get_conversation_template import re def truncate_list(lst, num): if num not in lst: return lst first_index = lst.index(num) return lst[:first_index + 1] def find_list_markers(text): pattern = re.compile(r'(?m)(^\d+\.\s|\n)') matches = pattern.finditer(text) return [(match.start(), match.end()) for match in matches] def checkin(pointer,start,marker): for b,e in marker: if b<=pointer{text[pointer:start]}" result += sub_text pointer = end if pointer < len(text): result += f"{text[pointer:]}" return result def warmup(model): conv = get_conversation_template(args.model_type) if args.model_type == "llama-2-chat": sys_p = "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information." conv.system_message = sys_p conv.append_message(conv.roles[0], "Hello") conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() if args.model_type == "llama-2-chat": prompt += " " input_ids = model.tokenizer([prompt]).input_ids input_ids = torch.as_tensor(input_ids).cuda() for output_ids in model.ea_generate(input_ids): ol=output_ids.shape[1] def bot(history, session_state): temperature = 0.5 top_p = 0.9 if not history: return history,"0.00 tokens/s","0.00",session_state pure_history=session_state.get("pure_history",[]) assert args.model_type == "llama-2-chat" or "vicuna" conv = get_conversation_template(args.model_type) if args.model_type == "llama-2-chat": sys_p = "You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information." conv.system_message = sys_p for query, response in pure_history: conv.append_message(conv.roles[0], query) if args.model_type == "llama-2-chat" and response: response = " " + response conv.append_message(conv.roles[1], response) prompt = conv.get_prompt() if args.model_type == "llama-2-chat": prompt += " " input_ids = model.tokenizer([prompt]).input_ids input_ids = torch.as_tensor(input_ids).cuda() input_len = input_ids.shape[1] naive_text = [] cu_len = input_len totaltime=0 start_time=time.time() total_ids=0 for output_ids in model.ea_generate(input_ids, temperature=temperature, top_p=top_p, max_steps=args.max_new_token): totaltime+=(time.time()-start_time) total_ids+=1 decode_ids = output_ids[0, input_len:].tolist() decode_ids = truncate_list(decode_ids, model.tokenizer.eos_token_id) text = model.tokenizer.decode(decode_ids, skip_special_tokens=True, spaces_between_special_tokens=False, clean_up_tokenization_spaces=True, ) naive_text.append(model.tokenizer.decode(output_ids[0, cu_len], skip_special_tokens=True, spaces_between_special_tokens=False, clean_up_tokenization_spaces=True, )) cu_len = output_ids.shape[1] colored_text = highlight_text(text, naive_text, "orange") #if highlight_ExInfer: history[-1][1] = colored_text # else: # history[-1][1] = text pure_history[-1][1] = text session_state["pure_history"]=pure_history new_tokens = cu_len-input_len yield history,f"{new_tokens/totaltime:.2f} tokens/s",f"{new_tokens/total_ids:.2f}",session_state start_time = time.time() def user(user_message, history,session_state): if history==None: history=[] pure_history = session_state.get("pure_history", []) pure_history += [[user_message, None]] session_state["pure_history"] = pure_history return "", history + [[user_message, None]],session_state def regenerate(history,session_state): try: if not history: return history, None,"0.00 tokens/s","0.00",session_state pure_history = session_state.get("pure_history", []) try: pure_history[-1][-1] = None except: print(1) session_state["pure_history"]=pure_history if len(history) > 1: # Check if there's more than one entry in history (i.e., at least one bot response) new_history = history[:-1] # Remove the last bot response last_user_message = history[-1][0] # Get the last user message return new_history + [[last_user_message, None]], None,"0.00 tokens/s","0.00",session_state history[-1][1] = None return history, None,"0.00 tokens/s","0.00",session_state except: print(2) return history, None, "0.00 tokens/s", "0.00", session_state def clear(history,session_state): pure_history = session_state.get("pure_history", []) pure_history = [] session_state["pure_history"] = pure_history return [],"0.00 tokens/s","0.00",session_state parser = argparse.ArgumentParser() parser.add_argument( "--ea-model-path", type=str, default=".", help="The path to the weights. This can be a local folder or a Hugging Face repo ID.", ) parser.add_argument("--base-model-path", type=str, default="lmsys/vicuna-7b-v1.3", help="path of basemodel, huggingface project or local path") parser.add_argument( "--load-in-8bit", action="store_true", help="Use 8-bit quantization" ) parser.add_argument( "--load-in-4bit", action="store_true", help="Use 4-bit quantization" ) parser.add_argument("--model-type", type=str, default="vicuna", help="llama-2-chat or vicuna, for chat template") parser.add_argument( "--max-new-token", type=int, default=512, help="The maximum number of new generated tokens.", ) args = parser.parse_args() model = EaModel.from_pretrained( base_model_path=args.base_model_path, ea_model_path=args.ea_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True, load_in_4bit=args.load_in_4bit, load_in_8bit=True, device_map="auto" ) model.eval() warmup(model) custom_css = """ #speed textarea { color: red; font-size: 30px; }""" with gr.Blocks(css=custom_css) as demo: gs=gr.State({"pure_history":[]}) gr.Markdown('''## EAGLE Chatbot''') with gr.Row(): speed_box = gr.Textbox(label="Speed", elem_id="speed", interactive=False, value="0.00 tokens/s") compression_box = gr.Textbox(label="Compression Ratio", elem_id="speed", interactive=False, value="0.00") note1 = gr.Markdown(show_label=False, value='''The Compression Ratio is defined as the number of generated tokens divided by the number of forward passes in the original LLM. The original LLM is Vicuna 7B, with inference conducted on a T4 GPU and at a precision of int8.''') note=gr.Markdown(show_label=False,value='''The tokens that EAGLE correctly guesses will be highlighted in orange. Note: This highlighting may lead to special formatting rendering issues in some instances, particularly when generating code.''') chatbot = gr.Chatbot(height=600,show_label=False) msg = gr.Textbox(label="Your input") with gr.Row(): send_button = gr.Button("Send") stop_button = gr.Button("Stop") regenerate_button = gr.Button("Regenerate") clear_button = gr.Button("Clear") enter_event=msg.submit(user, [msg, chatbot,gs], [msg, chatbot,gs], queue=True).then( bot, [chatbot,gs ], [chatbot,speed_box,compression_box,gs] ) clear_button.click(clear, [chatbot,gs], [chatbot,speed_box,compression_box,gs], queue=True) send_event=send_button.click(user, [msg, chatbot,gs], [msg, chatbot,gs],queue=True).then( bot, [chatbot,gs ], [chatbot,speed_box,compression_box,gs] ) regenerate_event=regenerate_button.click(regenerate, [chatbot,gs], [chatbot, msg,speed_box,compression_box,gs],queue=True).then( bot, [chatbot,gs ], [chatbot,speed_box,compression_box,gs] ) stop_button.click(fn=None, inputs=None, outputs=None, cancels=[send_event,regenerate_event,enter_event]) demo.queue() demo.launch()