# imports import gradio as gr import requests import json import os from deep_translator import GoogleTranslator from langdetect import detect from transformers import pipeline # Загрузка модели для генерации текста generator = pipeline("text-generation", model="gpt2") # functions def generate(prompt, max_tokens): if not prompt: return "" language = detect(prompt) prompt = GoogleTranslator(source=language, target='en').translate(prompt) print(prompt) output = generator(prompt, max_length=max_tokens)[0]['generated_text'] language = detect(output) output = GoogleTranslator(source=language, target='ru').translate(output) print(output) return output # css css = """ footer {visibility: hidden !important;} """ # ui with gr.Blocks(css=css) as vui: with gr.Tabs() as tabs: with gr.Row(): with gr.Tab("Запрос", id='request v'): with gr.Row(): with gr.Column(scale=3): promt = gr.Textbox(show_label=True, label="Запрос") with gr.Tab("Настройки", id='settingsv'): with gr.Row(): with gr.Column(scale=3): with gr.Row(): max_tokens = gr.Slider(show_label=True, label="Длина ответа", minimum=10, maximum=2500, value=100, step=1) with gr.Column(): text_button = gr.Button("Генерация", variant='primary', elem_id="generate") with gr.Column(scale=2): text_output = gr.Textbox(show_label=False, placeholder="Здравствуйте, я GPT-2! Чем я могу Вам помочь сегодня?") text_button.click(generate, inputs=[promt, max_tokens], outputs=text_output) #end vui.queue(api_open=False).launch()