import gradio as gr from transformers import AutoTokenizer, T5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("yuewu/T5_title2abstract") model = T5ForConditionalGeneration.from_pretrained("yuewu/T5_title2abstract") def title2abstract(text): input_ids = tokenizer( text, padding='max_length', max_length=128, return_tensors="pt").input_ids generated_ids = model.generate( input_ids, max_length=512, no_repeat_ngram_size=2, early_stopping=True) generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) return generated_text[0] demo = gr.Interface(fn=title2abstract, inputs="text", outputs="text", title="Title to abstract generator", description="Give a chemistry paper title and the model will write an abstract.") demo.launch()