import gradio as gr from gradio_imageslider import ImageSlider from loadimg import load_img import spaces from transformers import AutoModelForImageSegmentation import torch from torchvision import transforms torch.set_float32_matmul_precision(["high", "highest"][0]) birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to("cpu") transform_image = transforms.Compose( [ transforms.Resize((1024, 1024)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ] ) def fn(image): im = load_img(image, output_type="pil") im = im.convert("RGB") origin = im.copy() image = process(im) image = image.resize(origin.size) return (image, origin) @spaces.GPU def process(image): input_images = transform_image(image).unsqueeze(0).to("cpu") with torch.no_grad(): preds = birefnet(input_images)[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) mask = pred_pil.resize(image.size) image.putalpha(mask) return image slider1 = ImageSlider(label="Birefnet", type="pil") slider2 = ImageSlider(label="Birefnet", type="pil") image = gr.Image(label="Bir resim yükleyin") text = gr.Textbox(label="Bir resim URL'si yapıştırın") chameleon = load_img("elon.webp", output_type="pil") url= "https://dadanizm.com/wp-content/uploads/2022/11/elon-musk-992x2656.jpeg" tab1 = gr.Interface( fn, inputs=image, outputs=slider1, examples=[chameleon], api_name="image" ) tab2 = gr.Interface(fn, inputs=text, outputs=slider2, examples=[url], api_name="text") demo = gr.TabbedInterface( [tab1, tab2], ["Resim", "URL"], title="Birefnet ile Arka Plan Kaldırma" ) if __name__ == "__main__": demo.launch(show_error=True)