import gradio as gr import torch import os from kokoro import generate from models import build_model # Initialize model and device device = 'cuda' if torch.cuda.is_available() else 'cpu' MODEL = build_model('kokoro-v0_19.pth', device) # Load the voice models voices = { 'af': torch.load("voices/af.pt", weights_only=True), 'af_bella': torch.load("voices/af_bella.pt", weights_only=True), 'af_sarah': torch.load("voices/af_sarah.pt", weights_only=True), 'am_adam': torch.load("voices/am_adam.pt", weights_only=True), 'am_michael': torch.load("voices/am_michael.pt", weights_only=True), 'bf_emma': torch.load("voices/bf_emma.pt", weights_only=True), 'bf_isabella': torch.load("voices/bf_isabella.pt", weights_only=True), 'bm_george': torch.load("voices/bm_george.pt", weights_only=True), 'bm_lewis': torch.load("voices/bm_lewis.pt", weights_only=True), 'af_nicole': torch.load("voices/af_nicole.pt", weights_only=True), 'af_sky': torch.load("voices/af_sky.pt", weights_only=True) } def parse_voice_formula(formula): """Parse the voice formula string and return the combined voice tensor.""" if not formula.strip(): raise ValueError("Empty voice formula") # Initialize the weighted sum weighted_sum = None # Split the formula into terms terms = formula.split('+') for term in terms: # Parse each term (format: "0.333 * voice_name") weight, voice_name = term.strip().split('*') weight = float(weight.strip()) voice_name = voice_name.strip() # Get the voice tensor if voice_name not in voices: raise ValueError(f"Unknown voice: {voice_name}") voice_tensor = voices[voice_name] # Add to weighted sum if weighted_sum is None: weighted_sum = weight * voice_tensor else: weighted_sum += weight * voice_tensor return weighted_sum def get_new_voice(formula): try: # Parse the formula and get the combined voice tensor weighted_voices = parse_voice_formula(formula) # Save and load the combined voice torch.save(weighted_voices, "weighted_normalised_voices.pt") VOICEPACK = torch.load("weighted_normalised_voices.pt", weights_only=False).to(device) return VOICEPACK except Exception as e: raise gr.Error(f"Failed to create voice: {str(e)}") def text_to_speech(text, formula): try: if not text.strip(): raise gr.Error("Please enter some text") if not formula.strip(): raise gr.Error("Please select at least one voice") # Get the combined voice VOICEPACK = get_new_voice(formula) # Generate audio audio, phonemes = generate(MODEL, text, VOICEPACK, lang='a') return (24000, audio) except Exception as e: raise gr.Error(f"Failed to generate speech: {str(e)}") custom_css = """ /* Main title */ .heading { color: rgb(76, 175, 147) !important; font-size: 2em !important; font-weight: 600 !important; text-align: center !important; margin: 20px 0 10px 0 !important; } /* Description text */ .description { /*color: rgba(76, 175, 147,) !important;*/ text-align: center !important; max-width: 800px !important; margin: 0 auto 30px auto !important; font-size: 0.9em !important; line-height: 1.6 !important; } .container-wrap { display: flex !important; gap: 5px !important; justify-content: center !important; margin: 0 auto !important; max-width: 1400px !important; /* Increased max-width */ } .vert-group { min-width: 100px !important; /* Increased from 80px */ width: 120px !important; /* Increased from 90px */ flex: 0 0 auto !important; } .vert-group label { white-space: nowrap !important; overflow: visible !important; width: auto !important; font-size: 0.85em !important; /* Slightly increased font size */ transform-origin: left center !important; transform: rotate(0deg) translateX(-50%) !important; position: relative !important; left: 50% !important; display: inline-block !important; text-align: center !important; margin-bottom: 5px !important; padding: 0 5px !important; /* Added padding */ } .vert-group .wrap label { text-align: center !important; width: 100% !important; display: block !important; } /* Hover effect */ .vert-group:hover { transform: translateY(-5px) !important; box-shadow: 0 5px 15px rgba(0, 0, 0, 0.2) !important; } .slider_input_container { height: 200px !important; position: relative !important; width: 50px !important; /* Increased from 40px */ margin: 0 auto !important; overflow: hidden !important; } .slider_input_container input[type="range"] { position: absolute !important; width: 200px !important; left: -75px !important; /* Adjusted from -80px */ top: 100px !important; transform: rotate(90deg) !important; } .min_value { position: absolute !important; bottom: 0 !important; left: 10px !important; } .max_value { position: absolute !important; top: 0 !important; left: 10px !important; } .tab-like-container { transform: scale(0.8) !important; } .gradio-row, .gradio-column { background: none !important; border: none !important; min-width: unset !important; } .heading { text-align: center !important; margin-bottom: 1rem !important; } .description { text-align: center !important; margin-bottom: 2rem !important; color: rgba(255, 255, 255, 0.7) !important; } /* Generate button */ #generate-btn { background: linear-gradient(90deg, rgb(76, 175, 147), rgb(76, 147, 175)) !important; border: none !important; border-radius: 8px !important; padding: 12px 24px !important; color: white !important; font-weight: 600 !important; transition: transform 0.2s, box-shadow 0.2s !important; } #generate-btn:hover { transform: translateY(-2px) !important; box-shadow: 0 5px 15px rgba(76, 175, 147, 0.3) !important; } """ with gr.Blocks(css=custom_css, theme="ocean") as demo: gr.HTML( """
πŸŽ™οΈ AI Voice Mixer Studio - Kokoro TTS
Mix and match different voices to create your perfect text-to-speech voice.
Each slider represents a unique voice with distinct characteristics. This app lets you combine multiple voices with different weights to create custom voice combinations. Select voices using checkboxes and adjust their weights using the sliders below!
""" ) with gr.Row(variant="default", equal_height=True, elem_classes="container-wrap"): checkboxes = [] sliders = [] # Define slider configurations with emojis slider_configs = [ ("af", "Default πŸ‘©β€πŸ¦°"), ("af_bella", "Bella πŸ‘©β€πŸ¦° πŸ‡ΊπŸ‡Έ"), ("af_sarah", "Sarah πŸ‘©β€πŸ¦° πŸ‡ΊπŸ‡Έ"), ("af_nicole", "Nicole πŸ‘©β€πŸ¦° πŸ‡ΊπŸ‡Έ"), ("af_sky", "Sky πŸ‘©β€πŸ¦° πŸ‡ΊπŸ‡Έ"), ("am_adam", "Adam πŸ‘¨ πŸ‡ΊπŸ‡Έ"), ("am_michael", "Michael πŸ‘¨ πŸ‡ΊπŸ‡Έ"), ("bf_emma", "Emma πŸ‘©β€πŸ¦° πŸ‡¬πŸ‡§"), ("bf_isabella", "Isabella πŸ‘©β€πŸ¦° πŸ‡¬πŸ‡§"), ("bm_george", "George πŸ‘¨ πŸ‡¬πŸ‡§"), ("bm_lewis", "Lewis πŸ‘¨ πŸ‡¬πŸ‡§") ] # Create columns for each slider for value, label in slider_configs: with gr.Column(min_width=70, scale=1, variant="default", elem_classes="vert-group"): checkbox = gr.Checkbox(label='') slider = gr.Slider(label=label, minimum=0, maximum=1, interactive=False, value=0, step=0.01) checkboxes.append(checkbox) sliders.append(slider) # Add voice combination formula display with gr.Row(equal_height=True): formula_display = gr.Textbox( label="Voice Combination Formula", value="", lines=2, scale=4, interactive=False, placeholder="This will begin to display immediately once any of the voice checkboxes is selected selected" ) input_text = gr.Textbox( label="Input Text", placeholder="Enter text to convert to speech", lines=2, scale=4 ) button_tts = gr.Button("πŸŽ™οΈ Generate Voice", scale=2, min_width=100, elem_id="generate-btn") # Generate speech from the selected custom voice with gr.Row(equal_height=True): kokoro_tts = gr.Audio(label="Generated Speech", type="numpy") def generate_voice_formula(*values): """ Generate a formatted string showing the normalized voice combination. Returns: String like "0.6 * voice1 + 0.4 * voice2" """ n = len(values) // 2 checkbox_values = values[:n] slider_values = list(values[n:]) # Get active sliders and their names active_pairs = [(slider_values[i], slider_configs[i][0]) # Use value instead of label for i in range(len(slider_configs)) if checkbox_values[i] and slider_values[i] > 0] if not active_pairs: return "" # Calculate sum for normalization total_sum = sum(value for value, _ in active_pairs) if total_sum == 0: return "" # For single voice, always use weight 1.0 if len(active_pairs) == 1: return f"1.000 * {active_pairs[0][1]}" # Generate normalized formula for multiple voices terms = [] for value, name in active_pairs: normalized_value = value / total_sum terms.append(f"{normalized_value:.3f} * {name}") return " + ".join(terms) def check_box(checkbox): """Handle checkbox changes.""" if checkbox: return gr.Slider(interactive=True, value=1.0) # Changed default to 1.0 else: return gr.Slider(interactive=False, value=0) # Connect all checkboxes and sliders all_inputs = checkboxes + sliders # Update on checkbox changes for checkbox, slider in zip(checkboxes, sliders): checkbox.change( fn=check_box, inputs=[checkbox], outputs=[slider] ) # Update formula on checkbox changes checkbox.change( fn=generate_voice_formula, inputs=all_inputs, outputs=[formula_display] ) # Update formula on slider changes for slider in sliders: slider.change( fn=generate_voice_formula, inputs=all_inputs, outputs=[formula_display] ) button_tts.click( fn=text_to_speech, inputs=[input_text, formula_display], outputs=[kokoro_tts] ) if __name__ == "__main__": demo.launch()