#https://github.com/huggingface/diffusers/tree/main/examples/dreambooth #export MODEL_NAME="stabilityai/stable-diffusion-2-1-base" #export INSTANCE_DIR="./data_example" #export OUTPUT_DIR="./output_example" from diffusers import StableDiffusionPipeline from lora_diffusion import monkeypatch_lora, tune_lora_scale import torch import os import gradio as gr #os.system('python file.py') import subprocess # If your shell script has shebang, # you can omit shell=True argument. #subprocess.run("./run_lora_db.sh", shell=True) ##### model_id = "stabilityai/stable-diffusion-2-1-base" pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") prompt = "style of sks, baby lion" torch.manual_seed(1) #image = pipe(prompt, num_inference_steps=50, guidance_scale= 7).images[0] #no need #image # nice. diffusers are cool. #no need finetuned_lora_weights = "./lora_weight.pt" ##### #my fine tuned weights def monkeypatching(alpha): #, prompt, pipe): finetuned_lora_weights monkeypatch_lora(pipe.unet, torch.load(finetuned_lora_weights)) #"./lora_weight.pt")) tune_lora_scale(pipe.unet, alpha) #1.00) image = pipe(prompt, num_inference_steps=50, guidance_scale=7).images[0] image.save("./illust_lora.jpg") #"./contents/illust_lora.jpg") return image def accelerate_train_lora(steps): print("***********inside accelerate_train_lora 11111***********") #subprocess.run(accelerate launch {"./train_lora_dreambooth.py"} \ #subprocess.Popen(f'accelerate launch {"./train_lora_dreambooth.py"} \ os.system( f'accelerate launch {"./train_lora_dreambooth.py"} \ --pretrained_model_name_or_path={MODEL_NAME} \ --instance_data_dir={INSTANCE_DIR} \ --output_dir={OUTPUT_DIR} \ --instance_prompt="style of sks" \ --resolution=512 \ --train_batch_size=1 \ --gradient_accumulation_steps=1 \ --learning_rate=1e-4 \ --lr_scheduler="constant" \ --lr_warmup_steps=0 \ --max_train_steps={int(steps)}') #,shell=True) #30000 print("***********inside accelerate_train_lora 22222***********") return with gr.Blocks() as demo: with gr.Row(): in_images = gr.File(label="Upload images to fine-tune for LORA", file_count="multiple") #in_prompt = gr.Textbox(label="Enter a ") in_steps = gr.Number(label="Enter number of steps") in_alpha = gr.Slider(0.1,1.0, step=0.01, label="Set Alpha level - higher value has more chances to overfit") with gr.Row(): b1 = gr.Button(value="Train LORA model") b2 = gr.Button(value="Inference using LORA model") with gr.Row(): out_image = gr.Image(label="Image generated by LORA model") out_file = gr.File(label="Lora trained model weights") b1.click(fn = accelerate_train_lora, inputs=in_steps, outputs=out_file) b2.click(fn = monkeypatching, inputs=in_alpha, outputs=out_image) demo.launch(debug=True, show_error=True)