Spaces:
Build error
Build error
from datasets import load_dataset, Dataset | |
from functools import lru_cache | |
from typing import Tuple | |
import gradio as gr | |
import json | |
from env import MODELS, TASK, ORG_NAME | |
def aggregate_results() -> list: | |
"""From the path of outputs and model list, extracts the current scores and stores them in a list of dicts with model, score, time as keys | |
""" | |
all_results = [] | |
for org_model in MODELS: | |
try: | |
path = f"{ORG_NAME}/details_{org_model.replace('/', '__')}_private" | |
ds = load_dataset(path, "results", split="latest") | |
config = json.loads(ds["config_general"][0]) | |
results = json.loads(ds["results"][0]) | |
# Model data | |
org, model = org_model.split("/") | |
cur_result = { | |
"Org": org, | |
"Model": model, | |
"Duration (s)": config["end_time"] - config["start_time"] | |
} | |
# Extract the task from the JSON data | |
for k_metric, v_dict in results.items(): | |
if k_metric != "all": | |
for k, v in v_dict.items(): | |
cur_result[f"{k}({k_metric})"] = v | |
all_results.append(cur_result) | |
except Exception as e: | |
print(f"Error processing {model} {ORG_NAME}: {e}") | |
return all_results | |
def extract_dataviz() -> Tuple[list, list]: | |
"""From the path of outputs and model list, extracts from the details the worst samples, best samples | |
""" | |
all_samples = {} | |
for org_model in MODELS: | |
try: | |
path = f"{ORG_NAME}/details_{org_model.replace('/', '__')}_private" | |
ds = load_dataset(path, f"custom_{TASK.replace('/', '_')}_0", split="latest") | |
for ix, row in enumerate(ds): | |
prompt = row["full_prompt"] | |
gold = row["gold"] | |
score = list(row["metrics"].values())[0] | |
prediction = row["predictions"][0] | |
# We store flattened samples in a dict | |
# ix -> ix, prompt, gold, model_score for each model, model_prediction for each model | |
# then 2 lists: model_scores and models, to aggreg more easily | |
if ix not in all_samples: | |
all_samples[ix] = { | |
"ix": ix, | |
"prompt": prompt, | |
"gold": gold[0] if isinstance(gold, list) else gold, | |
# A bit redundant, but put in their own boxes for simplicity of access later | |
"model_scores": [], | |
"models": [] | |
} | |
if org_model not in all_samples[ix]["models"]: | |
all_samples[ix][f"{org_model}_score"] = row["metrics"] | |
all_samples[ix][f"{org_model}_prediction"] = prediction | |
all_samples[ix]["model_scores"].append(score) | |
all_samples[ix]["models"].append(org_model) | |
except Exception as e: | |
print(f"Error processing {org_model}: {e}") | |
full_samples = sorted(list(all_samples.values()), key= lambda r: r['ix']) | |
hard_samples = sorted([sample for sample in all_samples.values() if sum(sample["model_scores"]) == 0], key= lambda r: r['ix']) | |
easy_samples = sorted([sample for sample in all_samples.values() if sum(sample["model_scores"]) == len(sample["model_scores"])], key= lambda r: r['ix']) | |
return easy_samples, hard_samples, full_samples | |
def samples_to_box_display(samples: list, example_index: int = 0): | |
"""Adapted from Nathan's code in https://huggingface.co/spaces/SaylorTwift/OpenEvalsModelDetails/ | |
""" | |
if len(samples) == 0: | |
return "No samples in this category!" | |
outputs = [] | |
sample = samples[example_index] | |
for model in sample["models"]: | |
try: | |
outputs.append({ | |
'Model': model, | |
'Prediction': sample[f'{model}_prediction'], | |
'Prompt': sample['prompt'], | |
'Metrics': sample[f'{model}_score'], | |
'Gold': sample['gold'] | |
}) | |
except (KeyError, IndexError): | |
continue | |
if not outputs: | |
return "No results found for the selected combination." | |
# Create HTML output with all models | |
html_output = "<div style='max-width: 800px; margin: 0 auto;'>\n\n" | |
# Show gold answer at the top with distinct styling | |
if outputs: | |
html_output += "<div style='background: #e6f3e6; padding: 20px; border-radius: 10px; margin-bottom: 20px;'>\n" | |
html_output += "<h3 style='margin-top: 0;'>Ground Truth</h3>\n" | |
html_output += "<div style='overflow-x: auto; max-width: 100%;'>\n" | |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{outputs[0]['Gold']}</code></pre>\n" | |
html_output += "</div>\n" | |
html_output += "</div>\n" | |
for output in outputs: | |
html_output += "<div style='background: #f5f5f5; padding: 20px; margin-bottom: 20px; border-radius: 10px;'>\n" | |
html_output += f"<h2 style='margin-top: 0;'>{output['Model']}</h2>\n" | |
# Format metrics as a clean table | |
html_output += "<details open style='margin-bottom: 15px;'>\n" | |
html_output += "<summary><h3 style='display: inline; margin: 0;'>Metrics</h3></summary>\n" | |
metrics = output['Metrics'] | |
if isinstance(metrics, str): | |
metrics = eval(metrics) | |
html_output += "<div style='overflow-x: auto;'>\n" | |
html_output += "<table style='width: 100%; margin: 10px 0; border-collapse: collapse;'>\n" | |
for key, value in metrics.items(): | |
if isinstance(value, float): | |
value = f"{value:.3f}" | |
html_output += f"<tr><td style='padding: 5px; border-bottom: 1px solid #ddd;'><strong>{key}</strong></td><td style='padding: 5px; border-bottom: 1px solid #ddd;'>{value}</td></tr>\n" | |
html_output += "</table>\n" | |
html_output += "</div>\n" | |
html_output += "</details>\n\n" | |
# Handle prompt formatting with better styling | |
html_output += "<details style='margin-bottom: 15px;'>\n" | |
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prompt</h3></summary>\n" | |
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n" | |
prompt_text = output['Prompt'] | |
if isinstance(prompt_text, list): | |
for i, msg in enumerate(prompt_text): | |
if isinstance(msg, dict) and 'content' in msg: | |
role = msg.get('role', 'message').title() | |
html_output += "<div style='margin-bottom: 10px;'>\n" | |
html_output += f"<strong>{role}:</strong>\n" | |
html_output += "<div style='overflow-x: auto;'>\n" | |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{msg['content']}</code></pre>\n" | |
html_output += "</div>\n" | |
html_output += "</div>\n" | |
else: | |
html_output += "<div style='margin-bottom: 10px;'>\n" | |
html_output += "<div style='overflow-x: auto;'>\n" | |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{json.dumps(msg, indent=2)}</code></pre>\n" | |
html_output += "</div>\n" | |
html_output += "</div>\n" | |
else: | |
html_output += "<div style='overflow-x: auto;'>\n" | |
if isinstance(prompt_text, dict) and 'content' in prompt_text: | |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text['content']}</code></pre>\n" | |
else: | |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 5px 0;'><code>{prompt_text}</code></pre>\n" | |
html_output += "</div>\n" | |
html_output += "</div>\n" | |
html_output += "</details>\n\n" | |
# Style prediction output - now in a collapsible section | |
html_output += "<details open style='margin-bottom: 15px;'>\n" | |
html_output += "<summary><h3 style='display: inline; margin: 0;'>Prediction</h3>" | |
# Add word count in a muted style | |
word_count = len(output['Prediction'].split()) | |
html_output += f"<span style='color: #666; font-size: 0.8em; margin-left: 10px;'>({word_count} words)</span>" | |
html_output += "</summary>\n" | |
html_output += "<div style='background: #ffffff; padding: 15px; border-radius: 5px; margin-top: 10px;'>\n" | |
html_output += "<div style='overflow-x: auto;'>\n" | |
html_output += f"<pre style='white-space: pre-wrap; word-wrap: break-word; margin: 0;'><code>{output['Prediction']}</code></pre>\n" | |
html_output += "</div>\n" | |
html_output += "</div>\n" | |
html_output += "</details>\n" | |
html_output += "</div>\n\n" | |
html_output += "</div>" | |
return html_output | |
def run_pipeline(samples_ix: int = 0): | |
results = aggregate_results() | |
best_samples, worst_samples, all_samples = extract_dataviz() | |
return gr.Dataframe(Dataset.from_list(results).to_pandas(), visible=True), \ | |
gr.HTML(samples_to_box_display(best_samples, samples_ix), label="Easiest samples (always found)", visible=True), \ | |
gr.HTML(samples_to_box_display(worst_samples, samples_ix), label="Hardest samples (always failed)", visible=True), \ | |
gr.HTML(samples_to_box_display(all_samples, samples_ix), label="All samples", visible=True) | |
def update_examples(samples_ix: int = 0): | |
best_samples, worst_samples, all_samples = extract_dataviz() | |
return samples_to_box_display(best_samples, samples_ix), \ | |
samples_to_box_display(worst_samples, samples_ix), \ | |
samples_to_box_display(all_samples, samples_ix) |