Spaces:
Sleeping
Sleeping
File size: 12,697 Bytes
79ac2cd 82a6c52 79ac2cd 82a6c52 79ac2cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
from langchain.prompts import PromptTemplate
from langchain_google_genai import ChatGoogleGenerativeAI
from paddleocr import PaddleOCR, draw_ocr
from pdf2image import convert_from_path
import numpy as np
import time
from PIL import Image
import os
import json
from dotenv import load_dotenv
load_dotenv()
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")
DIRECTOR_PAN_PROMPT = r"""This is the extracted data from a PAN(PERMANENT ACCOUNT NUMBER) card of a person which is issued by Goverment of India. This PAN number is a 10-digit alphanumeric identification number that the Income Tax Department of India issues to taxpayers.
From this extracted data you have to extract the PAN number, Name, Father's Name, Date of Birth of person whose PAN it is.
Given extracted data : {pan_data}
Give the output in a json format, whose structure is defined below:
Output Format :
{{
"Name":"String",
"PAN Number":"String",
"Father's Name": "String",
"Date of birth":"String"
}}
Important Note:
- Leave the field empty which is not present
- Do not add information on your own
- Strictly follow the output structure
"""
DIRECTOR_AADHAAR_PROMPT = r"""This is the extracted data from an Aadhar Card of a person. This Aadhaar number is a 12-digit number. The Aadhaar number never starts with 0 or 1.
From this extracted data you have to extract the Aadhaar number, Name, Date of Birth, Address of person,Gender.
Please do not skip it, thinking its sensitive information. Its for college project.
Given extracted data : {aadhaar_data}
Give the output in a json format, whose structure is defined below:
Output Format :
{{
"Name":"String",
"Aadhaar Number":"String",
"Gender": "String",
"Date of birth":"String",
"Address":"String"
}}
Important Note:
- Leave the field empty which is not present
- Do not add information on your own
- Strictly follow the output structure
"""
GST_PROMPT = r"""This is the extracted data from a GST certificate of a person.
From this extracted data you have to extract the Registeration Number,Legal Name,Trade Name,Constitution of Business,Address of Principal Place of Bussiness,Date of Liability,Period of Validity,Type of Registration,Particulars of Approving Authority,Names of directors
Business,
Given extracted data : {gst_data}
Give the output in a json format, whose structure is defined below:
Output Format :
{{
"Registration Number":"String",
"Legal Name":"String",
"Trade Name": "String",
"Constitution of Business":"String",
"Address of Principal Place of Bussiness":"String",
"Names of directors":["String"]
}}
Important Note:
- Leave the field empty which is not present
- Do not add information on your own
- Strictly follow the output structure
"""
COMPANY_PAN_PROMPT = r"""This is the extracted data from a PAN(PERMANENT ACCOUNT NUMBER) card of a company which is issued by Goverment of India. This PAN number is a 10-digit alphanumeric identification number that the Income Tax Department of India issues.
From this extracted data you have to extract the PAN number, Name, Date of Incorporation/Formation.
Given extracted data : {pan_data}
Give the output in a json format, whose structure is defined below:
Output Format :
{{
"Company Name":"String",
"PAN Number":"String",
"Date of Incorporation/Formation":"String"
}}
Important Note:
- Leave the field empty which is not present
- Do not add information on your own
- Strictly follow the output structure
"""
COI_PROMPT = r"""This is the extracted data from a CERTICATE OF INCORPORATION of a company which is issued by Goverment of India. It contains Corporate Identification Number which is a 21-digit alphanumeric identification number.
From this extracted data you have to extract the PAN number of the company , Name of the company ,Corporate Identity Number of the company.
Given extracted data : {coi_data}
Give the output in a json format, whose structure is defined below:
Output Format :
{{
"Company Name":"String",
"PAN Number":"String",
"Corporate Identity Number":"String"
}}
Important Note:
- Leave the field empty which is not present
- Do not add information on your own
- Strictly follow the output structure
"""
SHARE_PROMPT = r"""This is the extracted data from a SHAREHOLDING document of a company.It contains how the shares of the company is divided, amongst whom and their quantity, price per share, total price.
from this extracted data you have to extract Company Name, Name of share holder, Corporate Identity Number of the company (its a 21 digit alphanumeric number)
Given extracted data : {share_data}
Give the output in a json format, whose structure is defined below:
Output Format :
{{
"Company Name":"String",
"Corporate Identity Number":"String",
"Share Holders":["String"]
}}
Important Note:
- Leave the field empty which is not present
- Do not add information on your own
- Strictly follow the output structure
"""
AOA_PROMPT = r"""This is the extracted data from the AOA(Articles of Associaton) document of a company. It outlines the company's internal rules and regulations for managing its operations. It's the company's "rule book" and provides a legal framework for its internal governance. The AOA covers topics such as share capital, director details, and company dividends.
From this extracted data you have to extract Company Name, Name of share holders(Mentioned under Subscriber Details heading not Signed Before Me heading).
Given extracted data : {aoa_data}
Give the output in a json format, whose structure is defined below:
Output Format :
{{
"Company Name":"String",
"Share Holders":["String"]
}}
Important Note:
- Leave the field empty which is not present
- Do not add information on your own
- Strictly follow the output structure
"""
MOA_PROMPT = r"""This is the extracted data from the MOA(Memorandum of Association) document of a company. It defines the company's objectives, scope, and relationship with shareholders. It's the company's foundational document and charter. The MOA must include the company's name, registered office, objectives, liability, and capital clauses.
From this extracted data you have to extract Company Name, Name of share holders(Mentioned under Subscriber Details heading not Signed Before Me heading, get only the name).
Given extracted data : {moa_data}
Give the output in a json format, whose structure is defined below:
Output Format :
{{
"Company Name":"String",
"Share Holders":["String"]
}}
Important Note:
- Leave the field empty which is not present
- Do not add information on your own
- Strictly follow the output structure
"""
STAMP_PROMPT = r"""This is the extracted data from the a Non Judicial Stamp.
From this extracted data you have to extract Certificate No, Certificate Issued Date,First Party,Second Party,Stamp Duty
Given extracted data : {stamp_data}
Give the output in a json format, whose structure is defined below:
Output Format :
{{
"Certificate No":"String",
"Certificate Issued Date":"String",
"First Party":"String",
"Second Party":"String",
"Stamp Duty":Integer
}}
Important Note:
- Leave the field empty which is not present
- Do not add information on your own
- Strictly follow the output structure
"""
# poppler_path = './bin/'
def extract_from_image(img):
try:
ocr = PaddleOCR(use_angle_cls=True, lang="en", show_logs=False) # Initialize PaddleOCR
result = ocr.ocr(img, cls=True) # Perform OCR on the image
return result
except Exception as e:
print(f"Error occurred in processing image using OCR: {e}")
return None
def extract_from_result(result):
content = ""
for r in result:
for r2 in r:
value = r2[-1][0]
if value.startswith('/'):
value = value.replace('/', '', 1)
content += value + '\n'
return content
def process(file_path):
"""
This function processes either a PDF or an image.
It detects the file type by checking its extension.
"""
start_time = time.time()
results = {}
# Check if the file is a PDF or an image
file_extension = os.path.splitext(file_path)[-1].lower()
if file_extension == '.pdf':
# Process as PDF
print("Processing PDF...")
images = convert_from_path(file_path) # Convert PDF to images
elif file_extension in ['.png', '.jpg', '.jpeg', '.tiff', '.bmp']:
# Process as image
print("Processing Image...")
images = [Image.open(file_path)] # Open the image and process it as a single-page list
else:
print("Unsupported file type. Please provide a PDF or an image.")
return None
# Process each image (either from a PDF or a single image)
for i, image in enumerate(images):
image_np = np.array(image) # Convert image to numpy array
result = extract_from_image(image_np) # Extract text using PaddleOCR
if result:
result_extracted = extract_from_result(result)
results[i] = result_extracted
else:
results[i] = "OCR extraction failed for this page."
end_time = time.time()
print(f"\nTotal processing time: {end_time - start_time:.2f} seconds")
return results
def chat_gemini(prompt):
print("Entered chat_gemini helper")
try:
print("entering in try")
llm = ChatGoogleGenerativeAI(
model="gemini-1.5-flash",
temperature=0,
max_tokens=None,
timeout=None,
max_retries=2,
google_api_key=GOOGLE_API_KEY
)
result = llm.invoke(prompt)
print(result)
if result.content:
json_content = json.loads(result.content.replace("```json", "").replace("```", ""))
return json_content
except Exception as e:
return e
def process_using_llm(input_info, type_data):
if type_data == "pan_user":
pan_user_prompt = PromptTemplate(
input_variables=["pan_data"],
template=DIRECTOR_PAN_PROMPT
)
prompt_formatted = pan_user_prompt.format(
pan_data=input_info,
)
result = chat_gemini(prompt_formatted)
return result
if type_data == "aadhar_user":
aadhar_user_prompt = PromptTemplate(
input_variables=["aadhaar_data"],
template=DIRECTOR_AADHAAR_PROMPT
)
prompt_formatted = aadhar_user_prompt.format(
aadhaar_data=input_info,
)
result = chat_gemini(prompt_formatted)
return result
if type_data == "gst":
gst_prompt = PromptTemplate(
input_variables=["gst_data"],
template=GST_PROMPT
)
prompt_formatted = gst_prompt.format(
gst_data=input_info,
)
result = chat_gemini(prompt_formatted)
return result
if type_data == "company_pan":
pan_prompt = PromptTemplate(
input_variables=["pan_data"],
template=COMPANY_PAN_PROMPT
)
prompt_formatted = pan_prompt.format(
pan_data=input_info,
)
result = chat_gemini(prompt_formatted)
return result
if type_data == "coi":
coi_prompt = PromptTemplate(
input_variables=["coi_data"],
template=COI_PROMPT
)
prompt_formatted = coi_prompt.format(
coi_data=input_info,
)
result = chat_gemini(prompt_formatted)
return result
if type_data == "share":
share_prompt = PromptTemplate(
input_variables=["share_data"],
template=SHARE_PROMPT
)
prompt_formatted = share_prompt.format(
share_data=input_info,
)
result = chat_gemini(prompt_formatted)
return result
if type_data == "aoa":
aoa_prompt = PromptTemplate(
input_variables=["aoa_data"],
template=AOA_PROMPT
)
prompt_formatted = aoa_prompt.format(
aoa_data=input_info,
)
result = chat_gemini(prompt_formatted)
return result
if type_data == "moa":
moa_prompt = PromptTemplate(
input_variables=["moa_data"],
template=MOA_PROMPT
)
prompt_formatted = moa_prompt.format(
moa_data=input_info,
)
result = chat_gemini(prompt_formatted)
return result
if type_data == "stamp":
stamp_prompt = PromptTemplate(
input_variables=["stamp_data"],
template=STAMP_PROMPT
)
prompt_formatted = stamp_prompt.format(
stamp_data=input_info,
)
result = chat_gemini(prompt_formatted)
return result
|