# https://qiita.com/nekoniii3/items/5acf764af65212d9f04f
import gradio as gr
import os
from langchain_community.document_loaders import PyMuPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import ChatOpenAI
from langchain_community.vectorstores import Chroma
from langchain.chains import RetrievalQA
# from langchain_openai import OpenAIEmbeddings
from langchain_community.embeddings import HuggingFaceEmbeddings
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# os.environ["OPENAI_API_KEY"] = "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"
file_name1 = 'ALV2_ALV3DTU操作マニュアルDTU-V3SET01.pdf'
file_name2 = 'ALV3PCサーバ_ソフトウェア操作マニュアル_画像ファイル名付.pdf'
file_name3 = '美和ロック総合カタログ第31版_前半.pdf'
file_name4 = '美和ロック総合カタログ第31版_後半.pdf'
loader1 = PyMuPDFLoader(file_name1)
loader2 = PyMuPDFLoader(file_name2)
loader3 = PyMuPDFLoader(file_name3)
loader4 = PyMuPDFLoader(file_name4)
documents1 = loader1.load()
documents2 = loader2.load()
documents3 = loader3.load()
documents4 = loader4.load()
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts1 = text_splitter.split_documents(documents1)
texts2 = text_splitter.split_documents(documents2)
texts3 = text_splitter.split_documents(documents3)
texts4 = text_splitter.split_documents(documents4)
texts = texts1 + texts2 + texts3 + texts4
# embeddings = OpenAIEmbeddings(model="text-embedding-ada-002")
embeddings = HuggingFaceEmbeddings(model_name="oshizo/sbert-jsnli-luke-japanese-base-lite")
vectordb = Chroma.from_documents(texts, embeddings)
llm = ChatOpenAI(model_name="gpt-3.5-turbo-16k", temperature=0.05)
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vectordb.as_retriever(),
return_source_documents=True)
import shutil
def save_image_filepath(filepath: str):
print(filepath)
# イメージを保存
_, file_extension = os.path.splitext(filepath)
shutil.copy(filepath, './filepath{}'.format(file_extension))
pass
import boto3
s3 = boto3.client('s3',
aws_access_key_id="AKIA6ENMUHYQ7KWAEV7Q",
aws_secret_access_key="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",
region_name='ap-northeast-1'
)
# 画像のURL出力機能
def get_public_url(bucket, target_object_path):
"""
対象のS3ファイルのURLを取得する
Parameters
----------
bucket: string
S3のバケット名
target_object_path: string
取得したいS3内のファイルパス
Returns
----------
url: string
S3上のオブジェクトのURL
"""
bucket_location = s3.get_bucket_location(Bucket=bucket)
return "https://s3-{0}.amazonaws.com/{1}/{2}".format(
bucket_location['LocationConstraint'],
bucket,
target_object_path)
import fitz
doc1 = fitz.open(file_name1)
doc2 = fitz.open(file_name2)
import math
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
msg = gr.Textbox()
def user(user_message, history):
reply2 = qa(user_message)
reply=reply2['result']
for sd in reply2["source_documents"]:
# page_content = str(sd.page_content)
source = str(sd.metadata["source"])
page = sd.metadata["page"]+1
page_num = str(page).zfill(3)
# print("PDF:" + source)
# print("ページ:" + page_num)
if source == file_name1:
# ページ画像のURLを取得
bucket='page.dtu.manual'
key='page'+page_num+'_raster.png'
url = get_public_url(bucket, key)
reply = reply + ' '+page_num+''
elif source == file_name2:
# ページ画像のURLを取得
bucket='page.server.manual'
key='page'+page_num+'_raster.png'
url = get_public_url(bucket, key)
reply = reply + ' '+page_num+''
# PDFに貼り付けある画像のURLを取得
bucket='image.server.manual'
page2 = doc2[page]
page_annotations = page2.annots()
for annotation in page_annotations:
annotation_num = str(annotation).zfill(3)
# 注釈のプロパティを取得
key = annotation.info.get('content', '') # ノート注釈のテキストを取得
url = get_public_url(bucket, key)
reply = reply + ' '+key+''
elif source == file_name3:
page2 = str(math.floor(1+float(page_num)/2))
url = "https://dcs.mediapress-net.com/iportal/cv.do?c=20958580000&pg="+page2+"&v=MIW10001&d=LINK_MIW"
reply = reply + ' '+page2+''
elif source == file_name4:
page2 = str(math.floor(1+(486+float(page_num))/2))
url = "https://dcs.mediapress-net.com/iportal/cv.do?c=20958580000&pg="+page2+"&v=MIW10001&d=LINK_MIW"
reply = reply + ' '+page2+''
else:
exit(0)
return "", history + [[user_message, reply]]
def bot(history):
yield history
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=True).then(
bot, chatbot, chatbot
)
demo.queue()
demo.launch(share=True)