import gradio as gr import pandas as pd from io import BytesIO def convert_file(input_file, conversion_type): # Check if a file was uploaded if input_file is None: raise ValueError("Please upload a file.") # Determine if input_file is a file-like object or a file path string try: # Try reading from file-like object file_bytes = input_file.read() file_name = input_file.name except AttributeError: # If there's an AttributeError, treat input_file as a file path file_name = input_file with open(file_name, "rb") as f: file_bytes = f.read() file_extension = file_name.lower().split('.')[-1] df = None output_file = None converted_format = None # Conversion: CSV to Parquet if conversion_type == "CSV to Parquet": if file_extension != "csv": raise ValueError("For CSV to Parquet conversion, please upload a CSV file.") df = pd.read_csv(BytesIO(file_bytes)) output_file = "output.parquet" df.to_parquet(output_file, index=False) converted_format = "Parquet" # Conversion: Parquet to CSV elif conversion_type == "Parquet to CSV": if file_extension != "parquet": raise ValueError("For Parquet to CSV conversion, please upload a Parquet file.") df = pd.read_parquet(BytesIO(file_bytes)) output_file = "output.csv" df.to_csv(output_file, index=False) converted_format = "CSV" else: raise ValueError("Invalid conversion type selected.") # Generate a preview of the top 10 rows preview = df.head(10).to_string(index=False) info_message = ( f"Input file: {file_name}\n" f"Converted file format: {converted_format}\n" f"Total rows: {len(df)}\n" f"Total columns: {len(df.columns)}\n\n" f"Preview (Top 10 Rows):\n{preview}" ) return output_file, info_message # Enhanced custom CSS for a more visually appealing interface custom_css = """ body { background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%); font-family: 'Poppins', 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; } .gradio-container { max-width: 950px; margin: 40px auto; padding: 30px; background-color: #ffffff; border-radius: 16px; box-shadow: 0 10px 25px rgba(0,0,0,0.1); } h1 { color: #3a4149; font-size: 2.5rem; text-align: center; margin-bottom: 5px; font-weight: 600; } h2 { color: #5a6570; font-size: 1.2rem; text-align: center; margin-bottom: 25px; font-weight: 400; } .header-icon { font-size: 3rem; text-align: center; margin-bottom: 10px; color: #4285f4; } .instruction-box { background-color: #f8f9fa; border-left: 4px solid #4285f4; padding: 15px; margin-bottom: 25px; border-radius: 6px; } .instruction-step { margin: 8px 0; padding-left: 10px; } .file-box { border: 2px dashed #ddd; border-radius: 12px; padding: 20px; transition: all 0.3s ease; } .file-box:hover { border-color: #4285f4; box-shadow: 0 5px 15px rgba(66, 133, 244, 0.15); } .conversion-radio label { padding: 10px 15px; margin: 5px; border-radius: 8px; border: 1px solid #eaeaea; transition: all 0.2s ease; } .conversion-radio input:checked + label { background-color: #e8f0fe; border-color: #4285f4; color: #4285f4; } .convert-button { background: linear-gradient(to right, #4285f4, #34a853) !important; color: white !important; border: none !important; padding: 12px 25px !important; font-size: 16px !important; font-weight: 500 !important; border-radius: 30px !important; cursor: pointer; margin: 20px auto !important; display: block !important; box-shadow: 0 4px 12px rgba(66, 133, 244, 0.25) !important; } .convert-button:hover { box-shadow: 0 6px 16px rgba(66, 133, 244, 0.4) !important; transform: translateY(-2px); } .footer { text-align: center; margin-top: 30px; color: #70757a; font-size: 0.9rem; } .preview-box { background-color: #f8f9fa; border-radius: 8px; padding: 15px; font-family: monospace; white-space: pre-wrap; max-height: 400px; overflow-y: auto; } .info-tag { display: inline-block; background-color: #e8f0fe; color: #4285f4; padding: 4px 10px; border-radius: 20px; font-size: 0.85rem; margin-right: 8px; margin-bottom: 8px; } .divider { height: 1px; background: linear-gradient(to right, transparent, #ddd, transparent); margin: 25px 0; } """ with gr.Blocks(css=custom_css, title="DataFormat Converter") as demo: gr.HTML('
') gr.Markdown("# DataFormat Converter") gr.Markdown("## Seamlessly convert between CSV and Parquet formats with just a few clicks") gr.HTML('') with gr.Row(): with gr.Column(): gr.HTML("""Parquet files offer significant advantages for data storage and analysis:
CSV files are useful for: