Spaces:
Running
Running
Janne Hellsten
commited on
Commit
·
f7e4867
1
Parent(s):
d3a616a
Add --allow-tf32 perf tuning argument that can be used to enable tf32
Browse filesDefaults to keeping tf32 disabled. This is because we haven't fully
verified training results with fp32 enabled.
- docs/train-help.txt +1 -0
- train.py +8 -0
- training/training_loop.py +3 -0
docs/train-help.txt
CHANGED
@@ -65,5 +65,6 @@ Options:
|
|
65 |
--fp32 BOOL Disable mixed-precision training
|
66 |
--nhwc BOOL Use NHWC memory format with FP16
|
67 |
--nobench BOOL Disable cuDNN benchmarking
|
|
|
68 |
--workers INT Override number of DataLoader workers
|
69 |
--help Show this message and exit.
|
|
|
65 |
--fp32 BOOL Disable mixed-precision training
|
66 |
--nhwc BOOL Use NHWC memory format with FP16
|
67 |
--nobench BOOL Disable cuDNN benchmarking
|
68 |
+
--allow-tf32 BOOL Allow PyTorch to use TF32 internally
|
69 |
--workers INT Override number of DataLoader workers
|
70 |
--help Show this message and exit.
|
train.py
CHANGED
@@ -61,6 +61,7 @@ def setup_training_loop_kwargs(
|
|
61 |
# Performance options (not included in desc).
|
62 |
fp32 = None, # Disable mixed-precision training: <bool>, default = False
|
63 |
nhwc = None, # Use NHWC memory format with FP16: <bool>, default = False
|
|
|
64 |
nobench = None, # Disable cuDNN benchmarking: <bool>, default = False
|
65 |
workers = None, # Override number of DataLoader workers: <int>, default = 3
|
66 |
):
|
@@ -343,6 +344,12 @@ def setup_training_loop_kwargs(
|
|
343 |
if nobench:
|
344 |
args.cudnn_benchmark = False
|
345 |
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
if workers is not None:
|
347 |
assert isinstance(workers, int)
|
348 |
if not workers >= 1:
|
@@ -425,6 +432,7 @@ class CommaSeparatedList(click.ParamType):
|
|
425 |
@click.option('--fp32', help='Disable mixed-precision training', type=bool, metavar='BOOL')
|
426 |
@click.option('--nhwc', help='Use NHWC memory format with FP16', type=bool, metavar='BOOL')
|
427 |
@click.option('--nobench', help='Disable cuDNN benchmarking', type=bool, metavar='BOOL')
|
|
|
428 |
@click.option('--workers', help='Override number of DataLoader workers', type=int, metavar='INT')
|
429 |
|
430 |
def main(ctx, outdir, dry_run, **config_kwargs):
|
|
|
61 |
# Performance options (not included in desc).
|
62 |
fp32 = None, # Disable mixed-precision training: <bool>, default = False
|
63 |
nhwc = None, # Use NHWC memory format with FP16: <bool>, default = False
|
64 |
+
allow_tf32 = None, # Allow PyTorch to use TF32 for matmul and convolutions: <bool>, default = False
|
65 |
nobench = None, # Disable cuDNN benchmarking: <bool>, default = False
|
66 |
workers = None, # Override number of DataLoader workers: <int>, default = 3
|
67 |
):
|
|
|
344 |
if nobench:
|
345 |
args.cudnn_benchmark = False
|
346 |
|
347 |
+
if allow_tf32 is None:
|
348 |
+
allow_tf32 = False
|
349 |
+
assert isinstance(allow_tf32, bool)
|
350 |
+
if allow_tf32:
|
351 |
+
args.allow_tf32 = True
|
352 |
+
|
353 |
if workers is not None:
|
354 |
assert isinstance(workers, int)
|
355 |
if not workers >= 1:
|
|
|
432 |
@click.option('--fp32', help='Disable mixed-precision training', type=bool, metavar='BOOL')
|
433 |
@click.option('--nhwc', help='Use NHWC memory format with FP16', type=bool, metavar='BOOL')
|
434 |
@click.option('--nobench', help='Disable cuDNN benchmarking', type=bool, metavar='BOOL')
|
435 |
+
@click.option('--allow-tf32', help='Allow PyTorch to use TF32 internally', type=bool, metavar='BOOL')
|
436 |
@click.option('--workers', help='Override number of DataLoader workers', type=int, metavar='INT')
|
437 |
|
438 |
def main(ctx, outdir, dry_run, **config_kwargs):
|
training/training_loop.py
CHANGED
@@ -115,6 +115,7 @@ def training_loop(
|
|
115 |
network_snapshot_ticks = 50, # How often to save network snapshots? None = disable.
|
116 |
resume_pkl = None, # Network pickle to resume training from.
|
117 |
cudnn_benchmark = True, # Enable torch.backends.cudnn.benchmark?
|
|
|
118 |
abort_fn = None, # Callback function for determining whether to abort training. Must return consistent results across ranks.
|
119 |
progress_fn = None, # Callback function for updating training progress. Called for all ranks.
|
120 |
):
|
@@ -124,6 +125,8 @@ def training_loop(
|
|
124 |
np.random.seed(random_seed * num_gpus + rank)
|
125 |
torch.manual_seed(random_seed * num_gpus + rank)
|
126 |
torch.backends.cudnn.benchmark = cudnn_benchmark # Improves training speed.
|
|
|
|
|
127 |
conv2d_gradfix.enabled = True # Improves training speed.
|
128 |
grid_sample_gradfix.enabled = True # Avoids errors with the augmentation pipe.
|
129 |
|
|
|
115 |
network_snapshot_ticks = 50, # How often to save network snapshots? None = disable.
|
116 |
resume_pkl = None, # Network pickle to resume training from.
|
117 |
cudnn_benchmark = True, # Enable torch.backends.cudnn.benchmark?
|
118 |
+
allow_tf32 = False, # Enable torch.backends.cuda.matmul.allow_tf32 and torch.backends.cudnn.allow_tf32?
|
119 |
abort_fn = None, # Callback function for determining whether to abort training. Must return consistent results across ranks.
|
120 |
progress_fn = None, # Callback function for updating training progress. Called for all ranks.
|
121 |
):
|
|
|
125 |
np.random.seed(random_seed * num_gpus + rank)
|
126 |
torch.manual_seed(random_seed * num_gpus + rank)
|
127 |
torch.backends.cudnn.benchmark = cudnn_benchmark # Improves training speed.
|
128 |
+
torch.backends.cuda.matmul.allow_tf32 = allow_tf32 # Allow PyTorch to internally use tf32 for matmul
|
129 |
+
torch.backends.cudnn.allow_tf32 = allow_tf32 # Allow PyTorch to internally use tf32 for convolutions
|
130 |
conv2d_gradfix.enabled = True # Improves training speed.
|
131 |
grid_sample_gradfix.enabled = True # Avoids errors with the augmentation pipe.
|
132 |
|