yizhangliu commited on
Commit
c74712e
·
1 Parent(s): 5edb91e

Test Kolors for inpainting

Browse files
app.py CHANGED
@@ -45,7 +45,7 @@ plt = matplotlib.pyplot
45
 
46
  groundingdino_enable = True
47
  sam_enable = True
48
- inpainting_enable = False # True
49
  ram_enable = False
50
 
51
  lama_cleaner_enable = True
@@ -79,6 +79,11 @@ from io import BytesIO
79
  from diffusers import StableDiffusionInpaintPipeline
80
  from huggingface_hub import hf_hub_download
81
 
 
 
 
 
 
82
  from util_computer import computer_info
83
 
84
  # relate anything
@@ -125,6 +130,9 @@ kosmos_processor = None
125
 
126
  brush_color = "#00FFFF"
127
 
 
 
 
128
  def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
129
  args = SLConfig.fromfile(model_config_path)
130
  model = build_model(args)
@@ -321,13 +329,31 @@ def load_sd_model(device):
321
  logger.info(f"initialize stable-diffusion-inpainting...")
322
  sd_model = None
323
  if os.environ.get('IS_MY_DEBUG') is None:
324
- sd_model = StableDiffusionInpaintPipeline.from_pretrained(
325
- "runwayml/stable-diffusion-inpainting",
326
- revision="fp16",
327
- # "stabilityai/stable-diffusion-2-inpainting",
328
- torch_dtype=torch.float16,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
329
  )
330
- sd_model = sd_model.to(device)
 
 
331
 
332
  def load_lama_cleaner_model(device):
333
  # initialize lama_cleaner
@@ -986,7 +1012,7 @@ def main_gradio(args):
986
  print(f'torch.cuda.is_available = {torch.cuda.is_available()}')
987
  computer_info()
988
  block.queue(max_size=10, api_open=False)
989
- block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share)
990
 
991
  if __name__ == "__main__":
992
  parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
 
45
 
46
  groundingdino_enable = True
47
  sam_enable = True
48
+ inpainting_enable = True
49
  ram_enable = False
50
 
51
  lama_cleaner_enable = True
 
79
  from diffusers import StableDiffusionInpaintPipeline
80
  from huggingface_hub import hf_hub_download
81
 
82
+ from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256_inpainting import StableDiffusionXLInpaintPipeline
83
+ from kolors.models.modeling_chatglm import ChatGLMModel
84
+ from kolors.models.tokenization_chatglm import ChatGLMTokenizer
85
+ from diffusers import AutoencoderKL, EulerDiscreteScheduler, UNet2DConditionModel
86
+
87
  from util_computer import computer_info
88
 
89
  # relate anything
 
130
 
131
  brush_color = "#00FFFF"
132
 
133
+ MAX_SEED = np.iinfo(np.int32).max
134
+ MAX_IMAGE_SIZE = 1024
135
+
136
  def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
137
  args = SLConfig.fromfile(model_config_path)
138
  model = build_model(args)
 
329
  logger.info(f"initialize stable-diffusion-inpainting...")
330
  sd_model = None
331
  if os.environ.get('IS_MY_DEBUG') is None:
332
+ # sd_model = StableDiffusionInpaintPipeline.from_pretrained(
333
+ # "runwayml/stable-diffusion-inpainting",
334
+ # revision="fp16",
335
+ # # "stabilityai/stable-diffusion-2-inpainting",
336
+ # torch_dtype=torch.float16,
337
+ # )
338
+ # sd_model = sd_model.to(device)
339
+
340
+ ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors-Inpainting")
341
+ text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder',torch_dtype=torch.float16).half().to(device)
342
+ tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
343
+ vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
344
+ scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
345
+ unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
346
+
347
+ sd_model = StableDiffusionXLInpaintPipeline(
348
+ vae=vae,
349
+ text_encoder=text_encoder,
350
+ tokenizer=tokenizer,
351
+ unet=unet,
352
+ scheduler=scheduler
353
  )
354
+
355
+ sd_model.to(device)
356
+ sd_model.enable_attention_slicing()
357
 
358
  def load_lama_cleaner_model(device):
359
  # initialize lama_cleaner
 
1012
  print(f'torch.cuda.is_available = {torch.cuda.is_available()}')
1013
  computer_info()
1014
  block.queue(max_size=10, api_open=False)
1015
+ block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share, show_api=False)
1016
 
1017
  if __name__ == "__main__":
1018
  parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
kolors/__init__.py ADDED
File without changes
kolors/models/__init__.py ADDED
File without changes
kolors/models/configuration_chatglm.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+
3
+
4
+ class ChatGLMConfig(PretrainedConfig):
5
+ model_type = "chatglm"
6
+ def __init__(
7
+ self,
8
+ num_layers=28,
9
+ padded_vocab_size=65024,
10
+ hidden_size=4096,
11
+ ffn_hidden_size=13696,
12
+ kv_channels=128,
13
+ num_attention_heads=32,
14
+ seq_length=2048,
15
+ hidden_dropout=0.0,
16
+ classifier_dropout=None,
17
+ attention_dropout=0.0,
18
+ layernorm_epsilon=1e-5,
19
+ rmsnorm=True,
20
+ apply_residual_connection_post_layernorm=False,
21
+ post_layer_norm=True,
22
+ add_bias_linear=False,
23
+ add_qkv_bias=False,
24
+ bias_dropout_fusion=True,
25
+ multi_query_attention=False,
26
+ multi_query_group_num=1,
27
+ apply_query_key_layer_scaling=True,
28
+ attention_softmax_in_fp32=True,
29
+ fp32_residual_connection=False,
30
+ quantization_bit=0,
31
+ pre_seq_len=None,
32
+ prefix_projection=False,
33
+ **kwargs
34
+ ):
35
+ self.num_layers = num_layers
36
+ self.vocab_size = padded_vocab_size
37
+ self.padded_vocab_size = padded_vocab_size
38
+ self.hidden_size = hidden_size
39
+ self.ffn_hidden_size = ffn_hidden_size
40
+ self.kv_channels = kv_channels
41
+ self.num_attention_heads = num_attention_heads
42
+ self.seq_length = seq_length
43
+ self.hidden_dropout = hidden_dropout
44
+ self.classifier_dropout = classifier_dropout
45
+ self.attention_dropout = attention_dropout
46
+ self.layernorm_epsilon = layernorm_epsilon
47
+ self.rmsnorm = rmsnorm
48
+ self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm
49
+ self.post_layer_norm = post_layer_norm
50
+ self.add_bias_linear = add_bias_linear
51
+ self.add_qkv_bias = add_qkv_bias
52
+ self.bias_dropout_fusion = bias_dropout_fusion
53
+ self.multi_query_attention = multi_query_attention
54
+ self.multi_query_group_num = multi_query_group_num
55
+ self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
56
+ self.attention_softmax_in_fp32 = attention_softmax_in_fp32
57
+ self.fp32_residual_connection = fp32_residual_connection
58
+ self.quantization_bit = quantization_bit
59
+ self.pre_seq_len = pre_seq_len
60
+ self.prefix_projection = prefix_projection
61
+ super().__init__(**kwargs)
kolors/models/controlnet.py ADDED
@@ -0,0 +1,887 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from dataclasses import dataclass
15
+ from typing import Any, Dict, List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ from torch import nn
19
+ from torch.nn import functional as F
20
+
21
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
22
+ from diffusers.loaders.single_file_model import FromOriginalModelMixin
23
+ from diffusers.utils import BaseOutput, logging
24
+ from diffusers.models.attention_processor import (
25
+ ADDED_KV_ATTENTION_PROCESSORS,
26
+ CROSS_ATTENTION_PROCESSORS,
27
+ AttentionProcessor,
28
+ AttnAddedKVProcessor,
29
+ AttnProcessor,
30
+ )
31
+ from diffusers.models.embeddings import TextImageProjection, TextImageTimeEmbedding, TextTimeEmbedding, TimestepEmbedding, Timesteps
32
+ from diffusers.models.modeling_utils import ModelMixin
33
+
34
+ try:
35
+ from diffusers.unets.unet_2d_blocks import (
36
+ CrossAttnDownBlock2D,
37
+ DownBlock2D,
38
+ UNetMidBlock2D,
39
+ UNetMidBlock2DCrossAttn,
40
+ get_down_block,
41
+ )
42
+ from diffusers.unets.unet_2d_condition import UNet2DConditionModel
43
+ except:
44
+ from diffusers.models.unets.unet_2d_blocks import (
45
+ CrossAttnDownBlock2D,
46
+ DownBlock2D,
47
+ UNetMidBlock2D,
48
+ UNetMidBlock2DCrossAttn,
49
+ get_down_block,
50
+ )
51
+ from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel
52
+
53
+
54
+
55
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
56
+
57
+
58
+ @dataclass
59
+ class ControlNetOutput(BaseOutput):
60
+ """
61
+ The output of [`ControlNetModel`].
62
+
63
+ Args:
64
+ down_block_res_samples (`tuple[torch.Tensor]`):
65
+ A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
66
+ be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
67
+ used to condition the original UNet's downsampling activations.
68
+ mid_down_block_re_sample (`torch.Tensor`):
69
+ The activation of the middle block (the lowest sample resolution). Each tensor should be of shape
70
+ `(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
71
+ Output can be used to condition the original UNet's middle block activation.
72
+ """
73
+
74
+ down_block_res_samples: Tuple[torch.Tensor]
75
+ mid_block_res_sample: torch.Tensor
76
+
77
+
78
+ class ControlNetConditioningEmbedding(nn.Module):
79
+ """
80
+ Quoting from https://arxiv.org/abs/2302.05543: "Stable Diffusion uses a pre-processing method similar to VQ-GAN
81
+ [11] to convert the entire dataset of 512 × 512 images into smaller 64 × 64 “latent images” for stabilized
82
+ training. This requires ControlNets to convert image-based conditions to 64 × 64 feature space to match the
83
+ convolution size. We use a tiny network E(·) of four convolution layers with 4 × 4 kernels and 2 × 2 strides
84
+ (activated by ReLU, channels are 16, 32, 64, 128, initialized with Gaussian weights, trained jointly with the full
85
+ model) to encode image-space conditions ... into feature maps ..."
86
+ """
87
+
88
+ def __init__(
89
+ self,
90
+ conditioning_embedding_channels: int,
91
+ conditioning_channels: int = 3,
92
+ block_out_channels: Tuple[int, ...] = (16, 32, 96, 256),
93
+ ):
94
+ super().__init__()
95
+
96
+ self.conv_in = nn.Conv2d(conditioning_channels, block_out_channels[0], kernel_size=3, padding=1)
97
+
98
+ self.blocks = nn.ModuleList([])
99
+
100
+ for i in range(len(block_out_channels) - 1):
101
+ channel_in = block_out_channels[i]
102
+ channel_out = block_out_channels[i + 1]
103
+ self.blocks.append(nn.Conv2d(channel_in, channel_in, kernel_size=3, padding=1))
104
+ self.blocks.append(nn.Conv2d(channel_in, channel_out, kernel_size=3, padding=1, stride=2))
105
+
106
+ self.conv_out = zero_module(
107
+ nn.Conv2d(block_out_channels[-1], conditioning_embedding_channels, kernel_size=3, padding=1)
108
+ )
109
+
110
+ def forward(self, conditioning):
111
+ embedding = self.conv_in(conditioning)
112
+ embedding = F.silu(embedding)
113
+
114
+ for block in self.blocks:
115
+ embedding = block(embedding)
116
+ embedding = F.silu(embedding)
117
+
118
+ embedding = self.conv_out(embedding)
119
+
120
+ return embedding
121
+
122
+
123
+ class ControlNetModel(ModelMixin, ConfigMixin, FromOriginalModelMixin):
124
+ """
125
+ A ControlNet model.
126
+
127
+ Args:
128
+ in_channels (`int`, defaults to 4):
129
+ The number of channels in the input sample.
130
+ flip_sin_to_cos (`bool`, defaults to `True`):
131
+ Whether to flip the sin to cos in the time embedding.
132
+ freq_shift (`int`, defaults to 0):
133
+ The frequency shift to apply to the time embedding.
134
+ down_block_types (`tuple[str]`, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
135
+ The tuple of downsample blocks to use.
136
+ only_cross_attention (`Union[bool, Tuple[bool]]`, defaults to `False`):
137
+ block_out_channels (`tuple[int]`, defaults to `(320, 640, 1280, 1280)`):
138
+ The tuple of output channels for each block.
139
+ layers_per_block (`int`, defaults to 2):
140
+ The number of layers per block.
141
+ downsample_padding (`int`, defaults to 1):
142
+ The padding to use for the downsampling convolution.
143
+ mid_block_scale_factor (`float`, defaults to 1):
144
+ The scale factor to use for the mid block.
145
+ act_fn (`str`, defaults to "silu"):
146
+ The activation function to use.
147
+ norm_num_groups (`int`, *optional*, defaults to 32):
148
+ The number of groups to use for the normalization. If None, normalization and activation layers is skipped
149
+ in post-processing.
150
+ norm_eps (`float`, defaults to 1e-5):
151
+ The epsilon to use for the normalization.
152
+ cross_attention_dim (`int`, defaults to 1280):
153
+ The dimension of the cross attention features.
154
+ transformer_layers_per_block (`int` or `Tuple[int]`, *optional*, defaults to 1):
155
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
156
+ [`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
157
+ [`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
158
+ encoder_hid_dim (`int`, *optional*, defaults to None):
159
+ If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
160
+ dimension to `cross_attention_dim`.
161
+ encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
162
+ If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
163
+ embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
164
+ attention_head_dim (`Union[int, Tuple[int]]`, defaults to 8):
165
+ The dimension of the attention heads.
166
+ use_linear_projection (`bool`, defaults to `False`):
167
+ class_embed_type (`str`, *optional*, defaults to `None`):
168
+ The type of class embedding to use which is ultimately summed with the time embeddings. Choose from None,
169
+ `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
170
+ addition_embed_type (`str`, *optional*, defaults to `None`):
171
+ Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
172
+ "text". "text" will use the `TextTimeEmbedding` layer.
173
+ num_class_embeds (`int`, *optional*, defaults to 0):
174
+ Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
175
+ class conditioning with `class_embed_type` equal to `None`.
176
+ upcast_attention (`bool`, defaults to `False`):
177
+ resnet_time_scale_shift (`str`, defaults to `"default"`):
178
+ Time scale shift config for ResNet blocks (see `ResnetBlock2D`). Choose from `default` or `scale_shift`.
179
+ projection_class_embeddings_input_dim (`int`, *optional*, defaults to `None`):
180
+ The dimension of the `class_labels` input when `class_embed_type="projection"`. Required when
181
+ `class_embed_type="projection"`.
182
+ controlnet_conditioning_channel_order (`str`, defaults to `"rgb"`):
183
+ The channel order of conditional image. Will convert to `rgb` if it's `bgr`.
184
+ conditioning_embedding_out_channels (`tuple[int]`, *optional*, defaults to `(16, 32, 96, 256)`):
185
+ The tuple of output channel for each block in the `conditioning_embedding` layer.
186
+ global_pool_conditions (`bool`, defaults to `False`):
187
+ TODO(Patrick) - unused parameter.
188
+ addition_embed_type_num_heads (`int`, defaults to 64):
189
+ The number of heads to use for the `TextTimeEmbedding` layer.
190
+ """
191
+
192
+ _supports_gradient_checkpointing = True
193
+
194
+ @register_to_config
195
+ def __init__(
196
+ self,
197
+ in_channels: int = 4,
198
+ conditioning_channels: int = 3,
199
+ flip_sin_to_cos: bool = True,
200
+ freq_shift: int = 0,
201
+ down_block_types: Tuple[str, ...] = (
202
+ "CrossAttnDownBlock2D",
203
+ "CrossAttnDownBlock2D",
204
+ "CrossAttnDownBlock2D",
205
+ "DownBlock2D",
206
+ ),
207
+ mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
208
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
209
+ block_out_channels: Tuple[int, ...] = (320, 640, 1280, 1280),
210
+ layers_per_block: int = 2,
211
+ downsample_padding: int = 1,
212
+ mid_block_scale_factor: float = 1,
213
+ act_fn: str = "silu",
214
+ norm_num_groups: Optional[int] = 32,
215
+ norm_eps: float = 1e-5,
216
+ cross_attention_dim: int = 1280,
217
+ transformer_layers_per_block: Union[int, Tuple[int, ...]] = 1,
218
+ encoder_hid_dim: Optional[int] = None,
219
+ encoder_hid_dim_type: Optional[str] = None,
220
+ attention_head_dim: Union[int, Tuple[int, ...]] = 8,
221
+ num_attention_heads: Optional[Union[int, Tuple[int, ...]]] = None,
222
+ use_linear_projection: bool = False,
223
+ class_embed_type: Optional[str] = None,
224
+ addition_embed_type: Optional[str] = None,
225
+ addition_time_embed_dim: Optional[int] = None,
226
+ num_class_embeds: Optional[int] = None,
227
+ upcast_attention: bool = False,
228
+ resnet_time_scale_shift: str = "default",
229
+ projection_class_embeddings_input_dim: Optional[int] = None,
230
+ controlnet_conditioning_channel_order: str = "rgb",
231
+ conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
232
+ global_pool_conditions: bool = False,
233
+ addition_embed_type_num_heads: int = 64,
234
+ ):
235
+ super().__init__()
236
+
237
+ # If `num_attention_heads` is not defined (which is the case for most models)
238
+ # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
239
+ # The reason for this behavior is to correct for incorrectly named variables that were introduced
240
+ # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
241
+ # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
242
+ # which is why we correct for the naming here.
243
+ num_attention_heads = num_attention_heads or attention_head_dim
244
+
245
+ # Check inputs
246
+ if len(block_out_channels) != len(down_block_types):
247
+ raise ValueError(
248
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
249
+ )
250
+
251
+ if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
252
+ raise ValueError(
253
+ f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
254
+ )
255
+
256
+ if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
257
+ raise ValueError(
258
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
259
+ )
260
+
261
+ if isinstance(transformer_layers_per_block, int):
262
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
263
+
264
+ # input
265
+ conv_in_kernel = 3
266
+ conv_in_padding = (conv_in_kernel - 1) // 2
267
+ self.conv_in = nn.Conv2d(
268
+ in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
269
+ )
270
+
271
+ # time
272
+ time_embed_dim = block_out_channels[0] * 4
273
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
274
+ timestep_input_dim = block_out_channels[0]
275
+ self.time_embedding = TimestepEmbedding(
276
+ timestep_input_dim,
277
+ time_embed_dim,
278
+ act_fn=act_fn,
279
+ )
280
+
281
+ if encoder_hid_dim_type is None and encoder_hid_dim is not None:
282
+ encoder_hid_dim_type = "text_proj"
283
+ self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
284
+ logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
285
+
286
+ if encoder_hid_dim is None and encoder_hid_dim_type is not None:
287
+ raise ValueError(
288
+ f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
289
+ )
290
+
291
+ if encoder_hid_dim_type == "text_proj":
292
+ self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
293
+ elif encoder_hid_dim_type == "text_image_proj":
294
+ # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
295
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
296
+ # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
297
+ self.encoder_hid_proj = TextImageProjection(
298
+ text_embed_dim=encoder_hid_dim,
299
+ image_embed_dim=cross_attention_dim,
300
+ cross_attention_dim=cross_attention_dim,
301
+ )
302
+
303
+ elif encoder_hid_dim_type is not None:
304
+ raise ValueError(
305
+ f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
306
+ )
307
+ else:
308
+ self.encoder_hid_proj = None
309
+
310
+ # class embedding
311
+ if class_embed_type is None and num_class_embeds is not None:
312
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
313
+ elif class_embed_type == "timestep":
314
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
315
+ elif class_embed_type == "identity":
316
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
317
+ elif class_embed_type == "projection":
318
+ if projection_class_embeddings_input_dim is None:
319
+ raise ValueError(
320
+ "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
321
+ )
322
+ # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
323
+ # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
324
+ # 2. it projects from an arbitrary input dimension.
325
+ #
326
+ # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
327
+ # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
328
+ # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
329
+ self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
330
+ else:
331
+ self.class_embedding = None
332
+
333
+ if addition_embed_type == "text":
334
+ if encoder_hid_dim is not None:
335
+ text_time_embedding_from_dim = encoder_hid_dim
336
+ else:
337
+ text_time_embedding_from_dim = cross_attention_dim
338
+
339
+ self.add_embedding = TextTimeEmbedding(
340
+ text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
341
+ )
342
+ elif addition_embed_type == "text_image":
343
+ # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
344
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
345
+ # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
346
+ self.add_embedding = TextImageTimeEmbedding(
347
+ text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
348
+ )
349
+ elif addition_embed_type == "text_time":
350
+ self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
351
+ self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
352
+
353
+ elif addition_embed_type is not None:
354
+ raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
355
+
356
+ # control net conditioning embedding
357
+ self.controlnet_cond_embedding = ControlNetConditioningEmbedding(
358
+ conditioning_embedding_channels=block_out_channels[0],
359
+ block_out_channels=conditioning_embedding_out_channels,
360
+ conditioning_channels=conditioning_channels,
361
+ )
362
+
363
+ self.down_blocks = nn.ModuleList([])
364
+ self.controlnet_down_blocks = nn.ModuleList([])
365
+
366
+ if isinstance(only_cross_attention, bool):
367
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
368
+
369
+ if isinstance(attention_head_dim, int):
370
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
371
+
372
+ if isinstance(num_attention_heads, int):
373
+ num_attention_heads = (num_attention_heads,) * len(down_block_types)
374
+
375
+ # down
376
+ output_channel = block_out_channels[0]
377
+
378
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
379
+ controlnet_block = zero_module(controlnet_block)
380
+ self.controlnet_down_blocks.append(controlnet_block)
381
+
382
+ for i, down_block_type in enumerate(down_block_types):
383
+ input_channel = output_channel
384
+ output_channel = block_out_channels[i]
385
+ is_final_block = i == len(block_out_channels) - 1
386
+
387
+ down_block = get_down_block(
388
+ down_block_type,
389
+ num_layers=layers_per_block,
390
+ transformer_layers_per_block=transformer_layers_per_block[i],
391
+ in_channels=input_channel,
392
+ out_channels=output_channel,
393
+ temb_channels=time_embed_dim,
394
+ add_downsample=not is_final_block,
395
+ resnet_eps=norm_eps,
396
+ resnet_act_fn=act_fn,
397
+ resnet_groups=norm_num_groups,
398
+ cross_attention_dim=cross_attention_dim,
399
+ num_attention_heads=num_attention_heads[i],
400
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
401
+ downsample_padding=downsample_padding,
402
+ use_linear_projection=use_linear_projection,
403
+ only_cross_attention=only_cross_attention[i],
404
+ upcast_attention=upcast_attention,
405
+ resnet_time_scale_shift=resnet_time_scale_shift,
406
+ )
407
+ self.down_blocks.append(down_block)
408
+
409
+ for _ in range(layers_per_block):
410
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
411
+ controlnet_block = zero_module(controlnet_block)
412
+ self.controlnet_down_blocks.append(controlnet_block)
413
+
414
+ if not is_final_block:
415
+ controlnet_block = nn.Conv2d(output_channel, output_channel, kernel_size=1)
416
+ controlnet_block = zero_module(controlnet_block)
417
+ self.controlnet_down_blocks.append(controlnet_block)
418
+
419
+ # mid
420
+ mid_block_channel = block_out_channels[-1]
421
+
422
+ controlnet_block = nn.Conv2d(mid_block_channel, mid_block_channel, kernel_size=1)
423
+ controlnet_block = zero_module(controlnet_block)
424
+ self.controlnet_mid_block = controlnet_block
425
+
426
+ if mid_block_type == "UNetMidBlock2DCrossAttn":
427
+ self.mid_block = UNetMidBlock2DCrossAttn(
428
+ transformer_layers_per_block=transformer_layers_per_block[-1],
429
+ in_channels=mid_block_channel,
430
+ temb_channels=time_embed_dim,
431
+ resnet_eps=norm_eps,
432
+ resnet_act_fn=act_fn,
433
+ output_scale_factor=mid_block_scale_factor,
434
+ resnet_time_scale_shift=resnet_time_scale_shift,
435
+ cross_attention_dim=cross_attention_dim,
436
+ num_attention_heads=num_attention_heads[-1],
437
+ resnet_groups=norm_num_groups,
438
+ use_linear_projection=use_linear_projection,
439
+ upcast_attention=upcast_attention,
440
+ )
441
+ elif mid_block_type == "UNetMidBlock2D":
442
+ self.mid_block = UNetMidBlock2D(
443
+ in_channels=block_out_channels[-1],
444
+ temb_channels=time_embed_dim,
445
+ num_layers=0,
446
+ resnet_eps=norm_eps,
447
+ resnet_act_fn=act_fn,
448
+ output_scale_factor=mid_block_scale_factor,
449
+ resnet_groups=norm_num_groups,
450
+ resnet_time_scale_shift=resnet_time_scale_shift,
451
+ add_attention=False,
452
+ )
453
+ else:
454
+ raise ValueError(f"unknown mid_block_type : {mid_block_type}")
455
+
456
+ @classmethod
457
+ def from_unet(
458
+ cls,
459
+ unet: UNet2DConditionModel,
460
+ controlnet_conditioning_channel_order: str = "rgb",
461
+ conditioning_embedding_out_channels: Optional[Tuple[int, ...]] = (16, 32, 96, 256),
462
+ load_weights_from_unet: bool = True,
463
+ conditioning_channels: int = 3,
464
+ ):
465
+ r"""
466
+ Instantiate a [`ControlNetModel`] from [`UNet2DConditionModel`].
467
+
468
+ Parameters:
469
+ unet (`UNet2DConditionModel`):
470
+ The UNet model weights to copy to the [`ControlNetModel`]. All configuration options are also copied
471
+ where applicable.
472
+ """
473
+ transformer_layers_per_block = (
474
+ unet.config.transformer_layers_per_block if "transformer_layers_per_block" in unet.config else 1
475
+ )
476
+ encoder_hid_dim = unet.config.encoder_hid_dim if "encoder_hid_dim" in unet.config else None
477
+ encoder_hid_dim_type = unet.config.encoder_hid_dim_type if "encoder_hid_dim_type" in unet.config else None
478
+ addition_embed_type = unet.config.addition_embed_type if "addition_embed_type" in unet.config else None
479
+ addition_time_embed_dim = (
480
+ unet.config.addition_time_embed_dim if "addition_time_embed_dim" in unet.config else None
481
+ )
482
+
483
+ controlnet = cls(
484
+ encoder_hid_dim=encoder_hid_dim,
485
+ encoder_hid_dim_type=encoder_hid_dim_type,
486
+ addition_embed_type=addition_embed_type,
487
+ addition_time_embed_dim=addition_time_embed_dim,
488
+ transformer_layers_per_block=transformer_layers_per_block,
489
+ in_channels=unet.config.in_channels,
490
+ flip_sin_to_cos=unet.config.flip_sin_to_cos,
491
+ freq_shift=unet.config.freq_shift,
492
+ down_block_types=unet.config.down_block_types,
493
+ only_cross_attention=unet.config.only_cross_attention,
494
+ block_out_channels=unet.config.block_out_channels,
495
+ layers_per_block=unet.config.layers_per_block,
496
+ downsample_padding=unet.config.downsample_padding,
497
+ mid_block_scale_factor=unet.config.mid_block_scale_factor,
498
+ act_fn=unet.config.act_fn,
499
+ norm_num_groups=unet.config.norm_num_groups,
500
+ norm_eps=unet.config.norm_eps,
501
+ cross_attention_dim=unet.config.cross_attention_dim,
502
+ attention_head_dim=unet.config.attention_head_dim,
503
+ num_attention_heads=unet.config.num_attention_heads,
504
+ use_linear_projection=unet.config.use_linear_projection,
505
+ class_embed_type=unet.config.class_embed_type,
506
+ num_class_embeds=unet.config.num_class_embeds,
507
+ upcast_attention=unet.config.upcast_attention,
508
+ resnet_time_scale_shift=unet.config.resnet_time_scale_shift,
509
+ projection_class_embeddings_input_dim=unet.config.projection_class_embeddings_input_dim,
510
+ mid_block_type=unet.config.mid_block_type,
511
+ controlnet_conditioning_channel_order=controlnet_conditioning_channel_order,
512
+ conditioning_embedding_out_channels=conditioning_embedding_out_channels,
513
+ conditioning_channels=conditioning_channels,
514
+ )
515
+
516
+ if load_weights_from_unet:
517
+ controlnet.conv_in.load_state_dict(unet.conv_in.state_dict())
518
+ controlnet.time_proj.load_state_dict(unet.time_proj.state_dict())
519
+ controlnet.time_embedding.load_state_dict(unet.time_embedding.state_dict())
520
+
521
+ if controlnet.class_embedding:
522
+ controlnet.class_embedding.load_state_dict(unet.class_embedding.state_dict())
523
+
524
+ if hasattr(controlnet, "add_embedding"):
525
+ controlnet.add_embedding.load_state_dict(unet.add_embedding.state_dict())
526
+
527
+ controlnet.down_blocks.load_state_dict(unet.down_blocks.state_dict())
528
+ controlnet.mid_block.load_state_dict(unet.mid_block.state_dict())
529
+
530
+ return controlnet
531
+
532
+ @property
533
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
534
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
535
+ r"""
536
+ Returns:
537
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
538
+ indexed by its weight name.
539
+ """
540
+ # set recursively
541
+ processors = {}
542
+
543
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
544
+ if hasattr(module, "get_processor"):
545
+ processors[f"{name}.processor"] = module.get_processor()
546
+
547
+ for sub_name, child in module.named_children():
548
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
549
+
550
+ return processors
551
+
552
+ for name, module in self.named_children():
553
+ fn_recursive_add_processors(name, module, processors)
554
+
555
+ return processors
556
+
557
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
558
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
559
+ r"""
560
+ Sets the attention processor to use to compute attention.
561
+
562
+ Parameters:
563
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
564
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
565
+ for **all** `Attention` layers.
566
+
567
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
568
+ processor. This is strongly recommended when setting trainable attention processors.
569
+
570
+ """
571
+ count = len(self.attn_processors.keys())
572
+
573
+ if isinstance(processor, dict) and len(processor) != count:
574
+ raise ValueError(
575
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
576
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
577
+ )
578
+
579
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
580
+ if hasattr(module, "set_processor"):
581
+ if not isinstance(processor, dict):
582
+ module.set_processor(processor)
583
+ else:
584
+ module.set_processor(processor.pop(f"{name}.processor"))
585
+
586
+ for sub_name, child in module.named_children():
587
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
588
+
589
+ for name, module in self.named_children():
590
+ fn_recursive_attn_processor(name, module, processor)
591
+
592
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_default_attn_processor
593
+ def set_default_attn_processor(self):
594
+ """
595
+ Disables custom attention processors and sets the default attention implementation.
596
+ """
597
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
598
+ processor = AttnAddedKVProcessor()
599
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
600
+ processor = AttnProcessor()
601
+ else:
602
+ raise ValueError(
603
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
604
+ )
605
+
606
+ self.set_attn_processor(processor)
607
+
608
+ # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attention_slice
609
+ def set_attention_slice(self, slice_size: Union[str, int, List[int]]) -> None:
610
+ r"""
611
+ Enable sliced attention computation.
612
+
613
+ When this option is enabled, the attention module splits the input tensor in slices to compute attention in
614
+ several steps. This is useful for saving some memory in exchange for a small decrease in speed.
615
+
616
+ Args:
617
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
618
+ When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
619
+ `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
620
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
621
+ must be a multiple of `slice_size`.
622
+ """
623
+ sliceable_head_dims = []
624
+
625
+ def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
626
+ if hasattr(module, "set_attention_slice"):
627
+ sliceable_head_dims.append(module.sliceable_head_dim)
628
+
629
+ for child in module.children():
630
+ fn_recursive_retrieve_sliceable_dims(child)
631
+
632
+ # retrieve number of attention layers
633
+ for module in self.children():
634
+ fn_recursive_retrieve_sliceable_dims(module)
635
+
636
+ num_sliceable_layers = len(sliceable_head_dims)
637
+
638
+ if slice_size == "auto":
639
+ # half the attention head size is usually a good trade-off between
640
+ # speed and memory
641
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
642
+ elif slice_size == "max":
643
+ # make smallest slice possible
644
+ slice_size = num_sliceable_layers * [1]
645
+
646
+ slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
647
+
648
+ if len(slice_size) != len(sliceable_head_dims):
649
+ raise ValueError(
650
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
651
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
652
+ )
653
+
654
+ for i in range(len(slice_size)):
655
+ size = slice_size[i]
656
+ dim = sliceable_head_dims[i]
657
+ if size is not None and size > dim:
658
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
659
+
660
+ # Recursively walk through all the children.
661
+ # Any children which exposes the set_attention_slice method
662
+ # gets the message
663
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
664
+ if hasattr(module, "set_attention_slice"):
665
+ module.set_attention_slice(slice_size.pop())
666
+
667
+ for child in module.children():
668
+ fn_recursive_set_attention_slice(child, slice_size)
669
+
670
+ reversed_slice_size = list(reversed(slice_size))
671
+ for module in self.children():
672
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
673
+
674
+ def _set_gradient_checkpointing(self, module, value: bool = False) -> None:
675
+ if isinstance(module, (CrossAttnDownBlock2D, DownBlock2D)):
676
+ module.gradient_checkpointing = value
677
+
678
+ def forward(
679
+ self,
680
+ sample: torch.Tensor,
681
+ timestep: Union[torch.Tensor, float, int],
682
+ encoder_hidden_states: torch.Tensor,
683
+ controlnet_cond: torch.Tensor,
684
+ conditioning_scale: float = 1.0,
685
+ class_labels: Optional[torch.Tensor] = None,
686
+ timestep_cond: Optional[torch.Tensor] = None,
687
+ attention_mask: Optional[torch.Tensor] = None,
688
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
689
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
690
+ guess_mode: bool = False,
691
+ return_dict: bool = True,
692
+ ) -> Union[ControlNetOutput, Tuple[Tuple[torch.Tensor, ...], torch.Tensor]]:
693
+ """
694
+ The [`ControlNetModel`] forward method.
695
+
696
+ Args:
697
+ sample (`torch.Tensor`):
698
+ The noisy input tensor.
699
+ timestep (`Union[torch.Tensor, float, int]`):
700
+ The number of timesteps to denoise an input.
701
+ encoder_hidden_states (`torch.Tensor`):
702
+ The encoder hidden states.
703
+ controlnet_cond (`torch.Tensor`):
704
+ The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
705
+ conditioning_scale (`float`, defaults to `1.0`):
706
+ The scale factor for ControlNet outputs.
707
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
708
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
709
+ timestep_cond (`torch.Tensor`, *optional*, defaults to `None`):
710
+ Additional conditional embeddings for timestep. If provided, the embeddings will be summed with the
711
+ timestep_embedding passed through the `self.time_embedding` layer to obtain the final timestep
712
+ embeddings.
713
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
714
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
715
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
716
+ negative values to the attention scores corresponding to "discard" tokens.
717
+ added_cond_kwargs (`dict`):
718
+ Additional conditions for the Stable Diffusion XL UNet.
719
+ cross_attention_kwargs (`dict[str]`, *optional*, defaults to `None`):
720
+ A kwargs dictionary that if specified is passed along to the `AttnProcessor`.
721
+ guess_mode (`bool`, defaults to `False`):
722
+ In this mode, the ControlNet encoder tries its best to recognize the input content of the input even if
723
+ you remove all prompts. A `guidance_scale` between 3.0 and 5.0 is recommended.
724
+ return_dict (`bool`, defaults to `True`):
725
+ Whether or not to return a [`~models.controlnet.ControlNetOutput`] instead of a plain tuple.
726
+
727
+ Returns:
728
+ [`~models.controlnet.ControlNetOutput`] **or** `tuple`:
729
+ If `return_dict` is `True`, a [`~models.controlnet.ControlNetOutput`] is returned, otherwise a tuple is
730
+ returned where the first element is the sample tensor.
731
+ """
732
+ # check channel order
733
+ channel_order = self.config.controlnet_conditioning_channel_order
734
+
735
+ if channel_order == "rgb":
736
+ # in rgb order by default
737
+ ...
738
+ elif channel_order == "bgr":
739
+ controlnet_cond = torch.flip(controlnet_cond, dims=[1])
740
+ else:
741
+ raise ValueError(f"unknown `controlnet_conditioning_channel_order`: {channel_order}")
742
+
743
+ # prepare attention_mask
744
+ if attention_mask is not None:
745
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
746
+ attention_mask = attention_mask.unsqueeze(1)
747
+
748
+ #Todo
749
+ if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
750
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
751
+
752
+ # 1. time
753
+ timesteps = timestep
754
+ if not torch.is_tensor(timesteps):
755
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
756
+ # This would be a good case for the `match` statement (Python 3.10+)
757
+ is_mps = sample.device.type == "mps"
758
+ if isinstance(timestep, float):
759
+ dtype = torch.float32 if is_mps else torch.float64
760
+ else:
761
+ dtype = torch.int32 if is_mps else torch.int64
762
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
763
+ elif len(timesteps.shape) == 0:
764
+ timesteps = timesteps[None].to(sample.device)
765
+
766
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
767
+ timesteps = timesteps.expand(sample.shape[0])
768
+
769
+ t_emb = self.time_proj(timesteps)
770
+
771
+ # timesteps does not contain any weights and will always return f32 tensors
772
+ # but time_embedding might actually be running in fp16. so we need to cast here.
773
+ # there might be better ways to encapsulate this.
774
+ t_emb = t_emb.to(dtype=sample.dtype)
775
+
776
+ emb = self.time_embedding(t_emb, timestep_cond)
777
+ aug_emb = None
778
+
779
+ if self.class_embedding is not None:
780
+ if class_labels is None:
781
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
782
+
783
+ if self.config.class_embed_type == "timestep":
784
+ class_labels = self.time_proj(class_labels)
785
+
786
+ class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
787
+ emb = emb + class_emb
788
+
789
+ if self.config.addition_embed_type is not None:
790
+ if self.config.addition_embed_type == "text":
791
+ aug_emb = self.add_embedding(encoder_hidden_states)
792
+
793
+ elif self.config.addition_embed_type == "text_time":
794
+ if "text_embeds" not in added_cond_kwargs:
795
+ raise ValueError(
796
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
797
+ )
798
+ text_embeds = added_cond_kwargs.get("text_embeds")
799
+ if "time_ids" not in added_cond_kwargs:
800
+ raise ValueError(
801
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
802
+ )
803
+ time_ids = added_cond_kwargs.get("time_ids")
804
+ time_embeds = self.add_time_proj(time_ids.flatten())
805
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
806
+
807
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
808
+ add_embeds = add_embeds.to(emb.dtype)
809
+ aug_emb = self.add_embedding(add_embeds)
810
+
811
+ emb = emb + aug_emb if aug_emb is not None else emb
812
+
813
+ # 2. pre-process
814
+ sample = self.conv_in(sample)
815
+
816
+ controlnet_cond = self.controlnet_cond_embedding(controlnet_cond)
817
+ sample = sample + controlnet_cond
818
+
819
+ # 3. down
820
+ down_block_res_samples = (sample,)
821
+ for downsample_block in self.down_blocks:
822
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
823
+ sample, res_samples = downsample_block(
824
+ hidden_states=sample,
825
+ temb=emb,
826
+ encoder_hidden_states=encoder_hidden_states,
827
+ attention_mask=attention_mask,
828
+ cross_attention_kwargs=cross_attention_kwargs,
829
+ )
830
+ else:
831
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
832
+
833
+ down_block_res_samples += res_samples
834
+
835
+ # 4. mid
836
+ if self.mid_block is not None:
837
+ if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
838
+ sample = self.mid_block(
839
+ sample,
840
+ emb,
841
+ encoder_hidden_states=encoder_hidden_states,
842
+ attention_mask=attention_mask,
843
+ cross_attention_kwargs=cross_attention_kwargs,
844
+ )
845
+ else:
846
+ sample = self.mid_block(sample, emb)
847
+
848
+ # 5. Control net blocks
849
+
850
+ controlnet_down_block_res_samples = ()
851
+
852
+ for down_block_res_sample, controlnet_block in zip(down_block_res_samples, self.controlnet_down_blocks):
853
+ down_block_res_sample = controlnet_block(down_block_res_sample)
854
+ controlnet_down_block_res_samples = controlnet_down_block_res_samples + (down_block_res_sample,)
855
+
856
+ down_block_res_samples = controlnet_down_block_res_samples
857
+
858
+ mid_block_res_sample = self.controlnet_mid_block(sample)
859
+
860
+ # 6. scaling
861
+ if guess_mode and not self.config.global_pool_conditions:
862
+ scales = torch.logspace(-1, 0, len(down_block_res_samples) + 1, device=sample.device) # 0.1 to 1.0
863
+ scales = scales * conditioning_scale
864
+ down_block_res_samples = [sample * scale for sample, scale in zip(down_block_res_samples, scales)]
865
+ mid_block_res_sample = mid_block_res_sample * scales[-1] # last one
866
+ else:
867
+ down_block_res_samples = [sample * conditioning_scale for sample in down_block_res_samples]
868
+ mid_block_res_sample = mid_block_res_sample * conditioning_scale
869
+
870
+ if self.config.global_pool_conditions:
871
+ down_block_res_samples = [
872
+ torch.mean(sample, dim=(2, 3), keepdim=True) for sample in down_block_res_samples
873
+ ]
874
+ mid_block_res_sample = torch.mean(mid_block_res_sample, dim=(2, 3), keepdim=True)
875
+
876
+ if not return_dict:
877
+ return (down_block_res_samples, mid_block_res_sample)
878
+
879
+ return ControlNetOutput(
880
+ down_block_res_samples=down_block_res_samples, mid_block_res_sample=mid_block_res_sample
881
+ )
882
+
883
+
884
+ def zero_module(module):
885
+ for p in module.parameters():
886
+ nn.init.zeros_(p)
887
+ return module
kolors/models/modeling_chatglm.py ADDED
@@ -0,0 +1,1298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ PyTorch ChatGLM model. """
2
+
3
+ import math
4
+ import copy
5
+ import warnings
6
+ import re
7
+ import sys
8
+
9
+ import torch
10
+ import torch.utils.checkpoint
11
+ import torch.nn.functional as F
12
+ from torch import nn
13
+ from torch.nn import CrossEntropyLoss, LayerNorm
14
+ from torch.nn import CrossEntropyLoss, LayerNorm, MSELoss, BCEWithLogitsLoss
15
+ from torch.nn.utils import skip_init
16
+ from typing import Optional, Tuple, Union, List, Callable, Dict, Any
17
+ from copy import deepcopy
18
+
19
+ from transformers.modeling_outputs import (
20
+ BaseModelOutputWithPast,
21
+ CausalLMOutputWithPast,
22
+ SequenceClassifierOutputWithPast,
23
+ )
24
+ from transformers.modeling_utils import PreTrainedModel
25
+ from transformers.utils import logging
26
+ from transformers.generation.logits_process import LogitsProcessor
27
+ from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
28
+
29
+ try:
30
+ from .configuration_chatglm import ChatGLMConfig
31
+ except:
32
+ from configuration_chatglm import ChatGLMConfig
33
+
34
+
35
+ # flags required to enable jit fusion kernels
36
+
37
+ if sys.platform != 'darwin':
38
+ torch._C._jit_set_profiling_mode(False)
39
+ torch._C._jit_set_profiling_executor(False)
40
+ torch._C._jit_override_can_fuse_on_cpu(True)
41
+ torch._C._jit_override_can_fuse_on_gpu(True)
42
+
43
+ logger = logging.get_logger(__name__)
44
+
45
+ _CHECKPOINT_FOR_DOC = "THUDM/ChatGLM"
46
+ _CONFIG_FOR_DOC = "ChatGLM6BConfig"
47
+
48
+ CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
49
+ "THUDM/chatglm3-6b-base",
50
+ # See all ChatGLM models at https://huggingface.co/models?filter=chatglm
51
+ ]
52
+
53
+
54
+ def default_init(cls, *args, **kwargs):
55
+ return cls(*args, **kwargs)
56
+
57
+
58
+ class InvalidScoreLogitsProcessor(LogitsProcessor):
59
+ def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
60
+ if torch.isnan(scores).any() or torch.isinf(scores).any():
61
+ scores.zero_()
62
+ scores[..., 5] = 5e4
63
+ return scores
64
+
65
+
66
+ class PrefixEncoder(torch.nn.Module):
67
+ """
68
+ The torch.nn model to encode the prefix
69
+ Input shape: (batch-size, prefix-length)
70
+ Output shape: (batch-size, prefix-length, 2*layers*hidden)
71
+ """
72
+
73
+ def __init__(self, config: ChatGLMConfig):
74
+ super().__init__()
75
+ self.prefix_projection = config.prefix_projection
76
+ if self.prefix_projection:
77
+ # Use a two-layer MLP to encode the prefix
78
+ kv_size = config.num_layers * config.kv_channels * config.multi_query_group_num * 2
79
+ self.embedding = torch.nn.Embedding(config.pre_seq_len, kv_size)
80
+ self.trans = torch.nn.Sequential(
81
+ torch.nn.Linear(kv_size, config.hidden_size),
82
+ torch.nn.Tanh(),
83
+ torch.nn.Linear(config.hidden_size, kv_size)
84
+ )
85
+ else:
86
+ self.embedding = torch.nn.Embedding(config.pre_seq_len,
87
+ config.num_layers * config.kv_channels * config.multi_query_group_num * 2)
88
+
89
+ def forward(self, prefix: torch.Tensor):
90
+ if self.prefix_projection:
91
+ prefix_tokens = self.embedding(prefix)
92
+ past_key_values = self.trans(prefix_tokens)
93
+ else:
94
+ past_key_values = self.embedding(prefix)
95
+ return past_key_values
96
+
97
+
98
+ def split_tensor_along_last_dim(
99
+ tensor: torch.Tensor,
100
+ num_partitions: int,
101
+ contiguous_split_chunks: bool = False,
102
+ ) -> List[torch.Tensor]:
103
+ """Split a tensor along its last dimension.
104
+
105
+ Arguments:
106
+ tensor: input tensor.
107
+ num_partitions: number of partitions to split the tensor
108
+ contiguous_split_chunks: If True, make each chunk contiguous
109
+ in memory.
110
+
111
+ Returns:
112
+ A list of Tensors
113
+ """
114
+ # Get the size and dimension.
115
+ last_dim = tensor.dim() - 1
116
+ last_dim_size = tensor.size()[last_dim] // num_partitions
117
+ # Split.
118
+ tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
119
+ # Note: torch.split does not create contiguous tensors by default.
120
+ if contiguous_split_chunks:
121
+ return tuple(chunk.contiguous() for chunk in tensor_list)
122
+
123
+ return tensor_list
124
+
125
+
126
+ class RotaryEmbedding(nn.Module):
127
+ def __init__(self, dim, original_impl=False, device=None, dtype=None):
128
+ super().__init__()
129
+ inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, device=device).to(dtype=dtype) / dim))
130
+ self.register_buffer("inv_freq", inv_freq)
131
+ self.dim = dim
132
+ self.original_impl = original_impl
133
+
134
+ def forward_impl(
135
+ self, seq_len: int, n_elem: int, dtype: torch.dtype, device: torch.device, base: int = 10000
136
+ ):
137
+ """Enhanced Transformer with Rotary Position Embedding.
138
+
139
+ Derived from: https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/
140
+ transformers/rope/__init__.py. MIT License:
141
+ https://github.com/labmlai/annotated_deep_learning_paper_implementations/blob/master/license.
142
+ """
143
+ # $\Theta = {\theta_i = 10000^{\frac{2(i-1)}{d}}, i \in [1, 2, ..., \frac{d}{2}]}$
144
+ theta = 1.0 / (base ** (torch.arange(0, n_elem, 2, dtype=torch.float, device=device) / n_elem))
145
+
146
+ # Create position indexes `[0, 1, ..., seq_len - 1]`
147
+ seq_idx = torch.arange(seq_len, dtype=torch.float, device=device)
148
+
149
+ # Calculate the product of position index and $\theta_i$
150
+ idx_theta = torch.outer(seq_idx, theta).float()
151
+
152
+ cache = torch.stack([torch.cos(idx_theta), torch.sin(idx_theta)], dim=-1)
153
+
154
+ # this is to mimic the behaviour of complex32, else we will get different results
155
+ if dtype in (torch.float16, torch.bfloat16, torch.int8):
156
+ cache = cache.bfloat16() if dtype == torch.bfloat16 else cache.half()
157
+ return cache
158
+
159
+ def forward(self, max_seq_len, offset=0):
160
+ return self.forward_impl(
161
+ max_seq_len, self.dim, dtype=self.inv_freq.dtype, device=self.inv_freq.device
162
+ )
163
+
164
+
165
+ @torch.jit.script
166
+ def apply_rotary_pos_emb(x: torch.Tensor, rope_cache: torch.Tensor) -> torch.Tensor:
167
+ # x: [sq, b, np, hn]
168
+ sq, b, np, hn = x.size(0), x.size(1), x.size(2), x.size(3)
169
+ rot_dim = rope_cache.shape[-2] * 2
170
+ x, x_pass = x[..., :rot_dim], x[..., rot_dim:]
171
+ # truncate to support variable sizes
172
+ rope_cache = rope_cache[:sq]
173
+ xshaped = x.reshape(sq, -1, np, rot_dim // 2, 2)
174
+ rope_cache = rope_cache.view(sq, -1, 1, xshaped.size(3), 2)
175
+ x_out2 = torch.stack(
176
+ [
177
+ xshaped[..., 0] * rope_cache[..., 0] - xshaped[..., 1] * rope_cache[..., 1],
178
+ xshaped[..., 1] * rope_cache[..., 0] + xshaped[..., 0] * rope_cache[..., 1],
179
+ ],
180
+ -1,
181
+ )
182
+ x_out2 = x_out2.flatten(3)
183
+ return torch.cat((x_out2, x_pass), dim=-1)
184
+
185
+
186
+ class RMSNorm(torch.nn.Module):
187
+ def __init__(self, normalized_shape, eps=1e-5, device=None, dtype=None, **kwargs):
188
+ super().__init__()
189
+ self.weight = torch.nn.Parameter(torch.empty(normalized_shape, device=device, dtype=dtype))
190
+ self.eps = eps
191
+
192
+ def forward(self, hidden_states: torch.Tensor):
193
+ input_dtype = hidden_states.dtype
194
+ variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
195
+ hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
196
+
197
+ return (self.weight * hidden_states).to(input_dtype)
198
+
199
+
200
+ class CoreAttention(torch.nn.Module):
201
+ def __init__(self, config: ChatGLMConfig, layer_number):
202
+ super(CoreAttention, self).__init__()
203
+
204
+ self.apply_query_key_layer_scaling = config.apply_query_key_layer_scaling
205
+ self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
206
+ if self.apply_query_key_layer_scaling:
207
+ self.attention_softmax_in_fp32 = True
208
+ self.layer_number = max(1, layer_number)
209
+
210
+ projection_size = config.kv_channels * config.num_attention_heads
211
+
212
+ # Per attention head and per partition values.
213
+ self.hidden_size_per_partition = projection_size
214
+ self.hidden_size_per_attention_head = projection_size // config.num_attention_heads
215
+ self.num_attention_heads_per_partition = config.num_attention_heads
216
+
217
+ coeff = None
218
+ self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
219
+ if self.apply_query_key_layer_scaling:
220
+ coeff = self.layer_number
221
+ self.norm_factor *= coeff
222
+ self.coeff = coeff
223
+
224
+ self.attention_dropout = torch.nn.Dropout(config.attention_dropout)
225
+
226
+ def forward(self, query_layer, key_layer, value_layer, attention_mask):
227
+ pytorch_major_version = int(torch.__version__.split('.')[0])
228
+ if pytorch_major_version >= 2:
229
+ query_layer, key_layer, value_layer = [k.permute(1, 2, 0, 3) for k in [query_layer, key_layer, value_layer]]
230
+ if attention_mask is None and query_layer.shape[2] == key_layer.shape[2]:
231
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
232
+ is_causal=True)
233
+ else:
234
+ if attention_mask is not None:
235
+ attention_mask = ~attention_mask
236
+ context_layer = torch.nn.functional.scaled_dot_product_attention(query_layer, key_layer, value_layer,
237
+ attention_mask)
238
+ context_layer = context_layer.permute(2, 0, 1, 3)
239
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
240
+ context_layer = context_layer.reshape(*new_context_layer_shape)
241
+ else:
242
+ # Raw attention scores
243
+
244
+ # [b, np, sq, sk]
245
+ output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
246
+
247
+ # [sq, b, np, hn] -> [sq, b * np, hn]
248
+ query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
249
+ # [sk, b, np, hn] -> [sk, b * np, hn]
250
+ key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
251
+
252
+ # preallocting input tensor: [b * np, sq, sk]
253
+ matmul_input_buffer = torch.empty(
254
+ output_size[0] * output_size[1], output_size[2], output_size[3], dtype=query_layer.dtype,
255
+ device=query_layer.device
256
+ )
257
+
258
+ # Raw attention scores. [b * np, sq, sk]
259
+ matmul_result = torch.baddbmm(
260
+ matmul_input_buffer,
261
+ query_layer.transpose(0, 1), # [b * np, sq, hn]
262
+ key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
263
+ beta=0.0,
264
+ alpha=(1.0 / self.norm_factor),
265
+ )
266
+
267
+ # change view to [b, np, sq, sk]
268
+ attention_scores = matmul_result.view(*output_size)
269
+
270
+ # ===========================
271
+ # Attention probs and dropout
272
+ # ===========================
273
+
274
+ # attention scores and attention mask [b, np, sq, sk]
275
+ if self.attention_softmax_in_fp32:
276
+ attention_scores = attention_scores.float()
277
+ if self.coeff is not None:
278
+ attention_scores = attention_scores * self.coeff
279
+ if attention_mask is None and attention_scores.shape[2] == attention_scores.shape[3]:
280
+ attention_mask = torch.ones(output_size[0], 1, output_size[2], output_size[3],
281
+ device=attention_scores.device, dtype=torch.bool)
282
+ attention_mask.tril_()
283
+ attention_mask = ~attention_mask
284
+ if attention_mask is not None:
285
+ attention_scores = attention_scores.masked_fill(attention_mask, float("-inf"))
286
+ attention_probs = F.softmax(attention_scores, dim=-1)
287
+ attention_probs = attention_probs.type_as(value_layer)
288
+
289
+ # This is actually dropping out entire tokens to attend to, which might
290
+ # seem a bit unusual, but is taken from the original Transformer paper.
291
+ attention_probs = self.attention_dropout(attention_probs)
292
+ # =========================
293
+ # Context layer. [sq, b, hp]
294
+ # =========================
295
+
296
+ # value_layer -> context layer.
297
+ # [sk, b, np, hn] --> [b, np, sq, hn]
298
+
299
+ # context layer shape: [b, np, sq, hn]
300
+ output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
301
+ # change view [sk, b * np, hn]
302
+ value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
303
+ # change view [b * np, sq, sk]
304
+ attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
305
+ # matmul: [b * np, sq, hn]
306
+ context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
307
+ # change view [b, np, sq, hn]
308
+ context_layer = context_layer.view(*output_size)
309
+ # [b, np, sq, hn] --> [sq, b, np, hn]
310
+ context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
311
+ # [sq, b, np, hn] --> [sq, b, hp]
312
+ new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size_per_partition,)
313
+ context_layer = context_layer.view(*new_context_layer_shape)
314
+
315
+ return context_layer
316
+
317
+
318
+ class SelfAttention(torch.nn.Module):
319
+ """Parallel self-attention layer abstract class.
320
+
321
+ Self-attention layer takes input with size [s, b, h]
322
+ and returns output of the same size.
323
+ """
324
+
325
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
326
+ super(SelfAttention, self).__init__()
327
+ self.layer_number = max(1, layer_number)
328
+
329
+ self.projection_size = config.kv_channels * config.num_attention_heads
330
+
331
+ # Per attention head and per partition values.
332
+ self.hidden_size_per_attention_head = self.projection_size // config.num_attention_heads
333
+ self.num_attention_heads_per_partition = config.num_attention_heads
334
+
335
+ self.multi_query_attention = config.multi_query_attention
336
+ self.qkv_hidden_size = 3 * self.projection_size
337
+ if self.multi_query_attention:
338
+ self.num_multi_query_groups_per_partition = config.multi_query_group_num
339
+ self.qkv_hidden_size = (
340
+ self.projection_size + 2 * self.hidden_size_per_attention_head * config.multi_query_group_num
341
+ )
342
+ self.query_key_value = nn.Linear(config.hidden_size, self.qkv_hidden_size,
343
+ bias=config.add_bias_linear or config.add_qkv_bias,
344
+ device=device, **_config_to_kwargs(config)
345
+ )
346
+
347
+ self.core_attention = CoreAttention(config, self.layer_number)
348
+
349
+ # Output.
350
+ self.dense = nn.Linear(self.projection_size, config.hidden_size, bias=config.add_bias_linear,
351
+ device=device, **_config_to_kwargs(config)
352
+ )
353
+
354
+ def _allocate_memory(self, inference_max_sequence_len, batch_size, device=None, dtype=None):
355
+ if self.multi_query_attention:
356
+ num_attention_heads = self.num_multi_query_groups_per_partition
357
+ else:
358
+ num_attention_heads = self.num_attention_heads_per_partition
359
+ return torch.empty(
360
+ inference_max_sequence_len,
361
+ batch_size,
362
+ num_attention_heads,
363
+ self.hidden_size_per_attention_head,
364
+ dtype=dtype,
365
+ device=device,
366
+ )
367
+
368
+ def forward(
369
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True
370
+ ):
371
+ # hidden_states: [sq, b, h]
372
+
373
+ # =================================================
374
+ # Pre-allocate memory for key-values for inference.
375
+ # =================================================
376
+ # =====================
377
+ # Query, Key, and Value
378
+ # =====================
379
+
380
+ # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
381
+ mixed_x_layer = self.query_key_value(hidden_states)
382
+
383
+ if self.multi_query_attention:
384
+ (query_layer, key_layer, value_layer) = mixed_x_layer.split(
385
+ [
386
+ self.num_attention_heads_per_partition * self.hidden_size_per_attention_head,
387
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
388
+ self.num_multi_query_groups_per_partition * self.hidden_size_per_attention_head,
389
+ ],
390
+ dim=-1,
391
+ )
392
+ query_layer = query_layer.view(
393
+ query_layer.size()[:-1] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
394
+ )
395
+ key_layer = key_layer.view(
396
+ key_layer.size()[:-1] + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
397
+ )
398
+ value_layer = value_layer.view(
399
+ value_layer.size()[:-1]
400
+ + (self.num_multi_query_groups_per_partition, self.hidden_size_per_attention_head)
401
+ )
402
+ else:
403
+ new_tensor_shape = mixed_x_layer.size()[:-1] + \
404
+ (self.num_attention_heads_per_partition,
405
+ 3 * self.hidden_size_per_attention_head)
406
+ mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
407
+
408
+ # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
409
+ (query_layer, key_layer, value_layer) = split_tensor_along_last_dim(mixed_x_layer, 3)
410
+
411
+ # apply relative positional encoding (rotary embedding)
412
+ if rotary_pos_emb is not None:
413
+ query_layer = apply_rotary_pos_emb(query_layer, rotary_pos_emb)
414
+ key_layer = apply_rotary_pos_emb(key_layer, rotary_pos_emb)
415
+
416
+ # adjust key and value for inference
417
+ if kv_cache is not None:
418
+ cache_k, cache_v = kv_cache
419
+ key_layer = torch.cat((cache_k, key_layer), dim=0)
420
+ value_layer = torch.cat((cache_v, value_layer), dim=0)
421
+ if use_cache:
422
+ kv_cache = (key_layer, value_layer)
423
+ else:
424
+ kv_cache = None
425
+
426
+ if self.multi_query_attention:
427
+ key_layer = key_layer.unsqueeze(-2)
428
+ key_layer = key_layer.expand(
429
+ -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
430
+ )
431
+ key_layer = key_layer.contiguous().view(
432
+ key_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
433
+ )
434
+ value_layer = value_layer.unsqueeze(-2)
435
+ value_layer = value_layer.expand(
436
+ -1, -1, -1, self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition, -1
437
+ )
438
+ value_layer = value_layer.contiguous().view(
439
+ value_layer.size()[:2] + (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
440
+ )
441
+
442
+ # ==================================
443
+ # core attention computation
444
+ # ==================================
445
+
446
+ context_layer = self.core_attention(query_layer, key_layer, value_layer, attention_mask)
447
+
448
+ # =================
449
+ # Output. [sq, b, h]
450
+ # =================
451
+
452
+ output = self.dense(context_layer)
453
+
454
+ return output, kv_cache
455
+
456
+
457
+ def _config_to_kwargs(args):
458
+ common_kwargs = {
459
+ "dtype": args.torch_dtype,
460
+ }
461
+ return common_kwargs
462
+
463
+
464
+ class MLP(torch.nn.Module):
465
+ """MLP.
466
+
467
+ MLP will take the input with h hidden state, project it to 4*h
468
+ hidden dimension, perform nonlinear transformation, and project the
469
+ state back into h hidden dimension.
470
+ """
471
+
472
+ def __init__(self, config: ChatGLMConfig, device=None):
473
+ super(MLP, self).__init__()
474
+
475
+ self.add_bias = config.add_bias_linear
476
+
477
+ # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
478
+ self.dense_h_to_4h = nn.Linear(
479
+ config.hidden_size,
480
+ config.ffn_hidden_size * 2,
481
+ bias=self.add_bias,
482
+ device=device,
483
+ **_config_to_kwargs(config)
484
+ )
485
+
486
+ def swiglu(x):
487
+ x = torch.chunk(x, 2, dim=-1)
488
+ return F.silu(x[0]) * x[1]
489
+
490
+ self.activation_func = swiglu
491
+
492
+ # Project back to h.
493
+ self.dense_4h_to_h = nn.Linear(
494
+ config.ffn_hidden_size,
495
+ config.hidden_size,
496
+ bias=self.add_bias,
497
+ device=device,
498
+ **_config_to_kwargs(config)
499
+ )
500
+
501
+ def forward(self, hidden_states):
502
+ # [s, b, 4hp]
503
+ intermediate_parallel = self.dense_h_to_4h(hidden_states)
504
+ intermediate_parallel = self.activation_func(intermediate_parallel)
505
+ # [s, b, h]
506
+ output = self.dense_4h_to_h(intermediate_parallel)
507
+ return output
508
+
509
+
510
+ class GLMBlock(torch.nn.Module):
511
+ """A single transformer layer.
512
+
513
+ Transformer layer takes input with size [s, b, h] and returns an
514
+ output of the same size.
515
+ """
516
+
517
+ def __init__(self, config: ChatGLMConfig, layer_number, device=None):
518
+ super(GLMBlock, self).__init__()
519
+ self.layer_number = layer_number
520
+
521
+ self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm
522
+
523
+ self.fp32_residual_connection = config.fp32_residual_connection
524
+
525
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
526
+ # Layernorm on the input data.
527
+ self.input_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
528
+ dtype=config.torch_dtype)
529
+
530
+ # Self attention.
531
+ self.self_attention = SelfAttention(config, layer_number, device=device)
532
+ self.hidden_dropout = config.hidden_dropout
533
+
534
+ # Layernorm on the attention output
535
+ self.post_attention_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
536
+ dtype=config.torch_dtype)
537
+
538
+ # MLP
539
+ self.mlp = MLP(config, device=device)
540
+
541
+ def forward(
542
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True,
543
+ ):
544
+ # hidden_states: [s, b, h]
545
+
546
+ # Layer norm at the beginning of the transformer layer.
547
+ layernorm_output = self.input_layernorm(hidden_states)
548
+ # Self attention.
549
+ attention_output, kv_cache = self.self_attention(
550
+ layernorm_output,
551
+ attention_mask,
552
+ rotary_pos_emb,
553
+ kv_cache=kv_cache,
554
+ use_cache=use_cache
555
+ )
556
+
557
+ # Residual connection.
558
+ if self.apply_residual_connection_post_layernorm:
559
+ residual = layernorm_output
560
+ else:
561
+ residual = hidden_states
562
+
563
+ layernorm_input = torch.nn.functional.dropout(attention_output, p=self.hidden_dropout, training=self.training)
564
+ layernorm_input = residual + layernorm_input
565
+
566
+ # Layer norm post the self attention.
567
+ layernorm_output = self.post_attention_layernorm(layernorm_input)
568
+
569
+ # MLP.
570
+ mlp_output = self.mlp(layernorm_output)
571
+
572
+ # Second residual connection.
573
+ if self.apply_residual_connection_post_layernorm:
574
+ residual = layernorm_output
575
+ else:
576
+ residual = layernorm_input
577
+
578
+ output = torch.nn.functional.dropout(mlp_output, p=self.hidden_dropout, training=self.training)
579
+ output = residual + output
580
+
581
+ return output, kv_cache
582
+
583
+
584
+ class GLMTransformer(torch.nn.Module):
585
+ """Transformer class."""
586
+
587
+ def __init__(self, config: ChatGLMConfig, device=None):
588
+ super(GLMTransformer, self).__init__()
589
+
590
+ self.fp32_residual_connection = config.fp32_residual_connection
591
+ self.post_layer_norm = config.post_layer_norm
592
+
593
+ # Number of layers.
594
+ self.num_layers = config.num_layers
595
+
596
+ # Transformer layers.
597
+ def build_layer(layer_number):
598
+ return GLMBlock(config, layer_number, device=device)
599
+
600
+ self.layers = torch.nn.ModuleList([build_layer(i + 1) for i in range(self.num_layers)])
601
+
602
+ if self.post_layer_norm:
603
+ LayerNormFunc = RMSNorm if config.rmsnorm else LayerNorm
604
+ # Final layer norm before output.
605
+ self.final_layernorm = LayerNormFunc(config.hidden_size, eps=config.layernorm_epsilon, device=device,
606
+ dtype=config.torch_dtype)
607
+
608
+ self.gradient_checkpointing = False
609
+
610
+ def _get_layer(self, layer_number):
611
+ return self.layers[layer_number]
612
+
613
+ def forward(
614
+ self, hidden_states, attention_mask, rotary_pos_emb, kv_caches=None,
615
+ use_cache: Optional[bool] = True,
616
+ output_hidden_states: Optional[bool] = False,
617
+ ):
618
+ if not kv_caches:
619
+ kv_caches = [None for _ in range(self.num_layers)]
620
+ presents = () if use_cache else None
621
+ if self.gradient_checkpointing and self.training:
622
+ if use_cache:
623
+ logger.warning_once(
624
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
625
+ )
626
+ use_cache = False
627
+
628
+ all_self_attentions = None
629
+ all_hidden_states = () if output_hidden_states else None
630
+ for index in range(self.num_layers):
631
+ if output_hidden_states:
632
+ all_hidden_states = all_hidden_states + (hidden_states,)
633
+
634
+ layer = self._get_layer(index)
635
+ if self.gradient_checkpointing and self.training:
636
+ layer_ret = torch.utils.checkpoint.checkpoint(
637
+ layer,
638
+ hidden_states,
639
+ attention_mask,
640
+ rotary_pos_emb,
641
+ kv_caches[index],
642
+ use_cache
643
+ )
644
+ else:
645
+ layer_ret = layer(
646
+ hidden_states,
647
+ attention_mask,
648
+ rotary_pos_emb,
649
+ kv_cache=kv_caches[index],
650
+ use_cache=use_cache
651
+ )
652
+ hidden_states, kv_cache = layer_ret
653
+ if use_cache:
654
+ presents = presents + (kv_cache,)
655
+
656
+ if output_hidden_states:
657
+ all_hidden_states = all_hidden_states + (hidden_states,)
658
+
659
+ # Final layer norm.
660
+ if self.post_layer_norm:
661
+ hidden_states = self.final_layernorm(hidden_states)
662
+
663
+ return hidden_states, presents, all_hidden_states, all_self_attentions
664
+
665
+
666
+ class ChatGLMPreTrainedModel(PreTrainedModel):
667
+ """
668
+ An abstract class to handle weights initialization and
669
+ a simple interface for downloading and loading pretrained models.
670
+ """
671
+
672
+ is_parallelizable = False
673
+ supports_gradient_checkpointing = True
674
+ config_class = ChatGLMConfig
675
+ base_model_prefix = "transformer"
676
+ _no_split_modules = ["GLMBlock"]
677
+
678
+ def _init_weights(self, module: nn.Module):
679
+ """Initialize the weights."""
680
+ return
681
+
682
+ def get_masks(self, input_ids, past_key_values, padding_mask=None):
683
+ batch_size, seq_length = input_ids.shape
684
+ full_attention_mask = torch.ones(batch_size, seq_length, seq_length, device=input_ids.device)
685
+ full_attention_mask.tril_()
686
+ past_length = 0
687
+ if past_key_values:
688
+ past_length = past_key_values[0][0].shape[0]
689
+ if past_length:
690
+ full_attention_mask = torch.cat((torch.ones(batch_size, seq_length, past_length,
691
+ device=input_ids.device), full_attention_mask), dim=-1)
692
+ if padding_mask is not None:
693
+ full_attention_mask = full_attention_mask * padding_mask.unsqueeze(1)
694
+ if not past_length and padding_mask is not None:
695
+ full_attention_mask -= padding_mask.unsqueeze(-1) - 1
696
+ full_attention_mask = (full_attention_mask < 0.5).bool()
697
+ full_attention_mask.unsqueeze_(1)
698
+ return full_attention_mask
699
+
700
+ def get_position_ids(self, input_ids, device):
701
+ batch_size, seq_length = input_ids.shape
702
+ position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
703
+ return position_ids
704
+
705
+ def _set_gradient_checkpointing(self, module, value=False):
706
+ if isinstance(module, GLMTransformer):
707
+ module.gradient_checkpointing = value
708
+
709
+
710
+ class Embedding(torch.nn.Module):
711
+ """Language model embeddings."""
712
+
713
+ def __init__(self, config: ChatGLMConfig, device=None):
714
+ super(Embedding, self).__init__()
715
+
716
+ self.hidden_size = config.hidden_size
717
+ # Word embeddings (parallel).
718
+ self.word_embeddings = nn.Embedding(
719
+ config.padded_vocab_size,
720
+ self.hidden_size,
721
+ dtype=config.torch_dtype,
722
+ device=device
723
+ )
724
+ self.fp32_residual_connection = config.fp32_residual_connection
725
+
726
+ def forward(self, input_ids):
727
+ # Embeddings.
728
+ words_embeddings = self.word_embeddings(input_ids)
729
+ embeddings = words_embeddings
730
+ # Data format change to avoid explicit tranposes : [b s h] --> [s b h].
731
+ embeddings = embeddings.transpose(0, 1).contiguous()
732
+ # If the input flag for fp32 residual connection is set, convert for float.
733
+ if self.fp32_residual_connection:
734
+ embeddings = embeddings.float()
735
+ return embeddings
736
+
737
+
738
+ class ChatGLMModel(ChatGLMPreTrainedModel):
739
+ def __init__(self, config: ChatGLMConfig, device=None, empty_init=True):
740
+ super().__init__(config)
741
+ if empty_init:
742
+ init_method = skip_init
743
+ else:
744
+ init_method = default_init
745
+ init_kwargs = {}
746
+ if device is not None:
747
+ init_kwargs["device"] = device
748
+ self.embedding = init_method(Embedding, config, **init_kwargs)
749
+ self.num_layers = config.num_layers
750
+ self.multi_query_group_num = config.multi_query_group_num
751
+ self.kv_channels = config.kv_channels
752
+
753
+ # Rotary positional embeddings
754
+ self.seq_length = config.seq_length
755
+ rotary_dim = (
756
+ config.hidden_size // config.num_attention_heads if config.kv_channels is None else config.kv_channels
757
+ )
758
+
759
+ self.rotary_pos_emb = RotaryEmbedding(rotary_dim // 2, original_impl=config.original_rope, device=device,
760
+ dtype=config.torch_dtype)
761
+ self.encoder = init_method(GLMTransformer, config, **init_kwargs)
762
+ self.output_layer = init_method(nn.Linear, config.hidden_size, config.padded_vocab_size, bias=False,
763
+ dtype=config.torch_dtype, **init_kwargs)
764
+ self.pre_seq_len = config.pre_seq_len
765
+ self.prefix_projection = config.prefix_projection
766
+ if self.pre_seq_len is not None:
767
+ for param in self.parameters():
768
+ param.requires_grad = False
769
+ self.prefix_tokens = torch.arange(self.pre_seq_len).long()
770
+ self.prefix_encoder = PrefixEncoder(config)
771
+ self.dropout = torch.nn.Dropout(0.1)
772
+
773
+ def get_input_embeddings(self):
774
+ return self.embedding.word_embeddings
775
+
776
+ def get_prompt(self, batch_size, device, dtype=torch.half):
777
+ prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
778
+ past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
779
+ past_key_values = past_key_values.view(
780
+ batch_size,
781
+ self.pre_seq_len,
782
+ self.num_layers * 2,
783
+ self.multi_query_group_num,
784
+ self.kv_channels
785
+ )
786
+ # seq_len, b, nh, hidden_size
787
+ past_key_values = self.dropout(past_key_values)
788
+ past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
789
+ return past_key_values
790
+
791
+ def forward(
792
+ self,
793
+ input_ids,
794
+ position_ids: Optional[torch.Tensor] = None,
795
+ attention_mask: Optional[torch.BoolTensor] = None,
796
+ full_attention_mask: Optional[torch.BoolTensor] = None,
797
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
798
+ inputs_embeds: Optional[torch.Tensor] = None,
799
+ use_cache: Optional[bool] = None,
800
+ output_hidden_states: Optional[bool] = None,
801
+ return_dict: Optional[bool] = None,
802
+ ):
803
+ output_hidden_states = (
804
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
805
+ )
806
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
807
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
808
+
809
+ batch_size, seq_length = input_ids.shape
810
+
811
+ if inputs_embeds is None:
812
+ inputs_embeds = self.embedding(input_ids)
813
+
814
+ if self.pre_seq_len is not None:
815
+ if past_key_values is None:
816
+ past_key_values = self.get_prompt(batch_size=batch_size, device=input_ids.device,
817
+ dtype=inputs_embeds.dtype)
818
+ if attention_mask is not None:
819
+ attention_mask = torch.cat([attention_mask.new_ones((batch_size, self.pre_seq_len)),
820
+ attention_mask], dim=-1)
821
+
822
+ if full_attention_mask is None:
823
+ if (attention_mask is not None and not attention_mask.all()) or (past_key_values and seq_length != 1):
824
+ full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask)
825
+
826
+ # Rotary positional embeddings
827
+ rotary_pos_emb = self.rotary_pos_emb(self.seq_length)
828
+ if position_ids is not None:
829
+ rotary_pos_emb = rotary_pos_emb[position_ids]
830
+ else:
831
+ rotary_pos_emb = rotary_pos_emb[None, :seq_length]
832
+ rotary_pos_emb = rotary_pos_emb.transpose(0, 1).contiguous()
833
+
834
+ # Run encoder.
835
+ hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder(
836
+ inputs_embeds, full_attention_mask, rotary_pos_emb=rotary_pos_emb,
837
+ kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states
838
+ )
839
+
840
+ if not return_dict:
841
+ return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
842
+
843
+ return BaseModelOutputWithPast(
844
+ last_hidden_state=hidden_states,
845
+ past_key_values=presents,
846
+ hidden_states=all_hidden_states,
847
+ attentions=all_self_attentions,
848
+ )
849
+
850
+ def quantize(self, weight_bit_width: int):
851
+ from .quantization import quantize
852
+ quantize(self.encoder, weight_bit_width)
853
+ return self
854
+
855
+
856
+ class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
857
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
858
+ super().__init__(config)
859
+
860
+ self.max_sequence_length = config.max_length
861
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
862
+ self.config = config
863
+ self.quantized = False
864
+
865
+ if self.config.quantization_bit:
866
+ self.quantize(self.config.quantization_bit, empty_init=True)
867
+
868
+ def _update_model_kwargs_for_generation(
869
+ self,
870
+ outputs: ModelOutput,
871
+ model_kwargs: Dict[str, Any],
872
+ is_encoder_decoder: bool = False,
873
+ standardize_cache_format: bool = False,
874
+ ) -> Dict[str, Any]:
875
+ # update past_key_values
876
+ model_kwargs["past_key_values"] = self._extract_past_from_model_output(
877
+ outputs, standardize_cache_format=standardize_cache_format
878
+ )
879
+
880
+ # update attention mask
881
+ if "attention_mask" in model_kwargs:
882
+ attention_mask = model_kwargs["attention_mask"]
883
+ model_kwargs["attention_mask"] = torch.cat(
884
+ [attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
885
+ )
886
+
887
+ # update position ids
888
+ if "position_ids" in model_kwargs:
889
+ position_ids = model_kwargs["position_ids"]
890
+ new_position_id = position_ids[..., -1:].clone()
891
+ new_position_id += 1
892
+ model_kwargs["position_ids"] = torch.cat(
893
+ [position_ids, new_position_id], dim=-1
894
+ )
895
+
896
+ model_kwargs["is_first_forward"] = False
897
+ return model_kwargs
898
+
899
+ def prepare_inputs_for_generation(
900
+ self,
901
+ input_ids: torch.LongTensor,
902
+ past_key_values: Optional[torch.Tensor] = None,
903
+ attention_mask: Optional[torch.Tensor] = None,
904
+ position_ids: Optional[torch.Tensor] = None,
905
+ use_cache: Optional[bool] = None,
906
+ is_first_forward: bool = True,
907
+ **kwargs
908
+ ) -> dict:
909
+ # only last token for input_ids if past is not None
910
+ if position_ids is None:
911
+ position_ids = self.get_position_ids(input_ids, device=input_ids.device)
912
+ if not is_first_forward:
913
+ if past_key_values is not None:
914
+ position_ids = position_ids[..., -1:]
915
+ input_ids = input_ids[:, -1:]
916
+ return {
917
+ "input_ids": input_ids,
918
+ "past_key_values": past_key_values,
919
+ "position_ids": position_ids,
920
+ "attention_mask": attention_mask,
921
+ "return_last_logit": True,
922
+ "use_cache": use_cache
923
+ }
924
+
925
+ def forward(
926
+ self,
927
+ input_ids: Optional[torch.Tensor] = None,
928
+ position_ids: Optional[torch.Tensor] = None,
929
+ attention_mask: Optional[torch.Tensor] = None,
930
+ past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
931
+ inputs_embeds: Optional[torch.Tensor] = None,
932
+ labels: Optional[torch.Tensor] = None,
933
+ use_cache: Optional[bool] = None,
934
+ output_attentions: Optional[bool] = None,
935
+ output_hidden_states: Optional[bool] = None,
936
+ return_dict: Optional[bool] = None,
937
+ return_last_logit: Optional[bool] = False,
938
+ ):
939
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
940
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
941
+
942
+ transformer_outputs = self.transformer(
943
+ input_ids=input_ids,
944
+ position_ids=position_ids,
945
+ attention_mask=attention_mask,
946
+ past_key_values=past_key_values,
947
+ inputs_embeds=inputs_embeds,
948
+ use_cache=use_cache,
949
+ output_hidden_states=output_hidden_states,
950
+ return_dict=return_dict,
951
+ )
952
+
953
+ hidden_states = transformer_outputs[0]
954
+ if return_last_logit:
955
+ hidden_states = hidden_states[-1:]
956
+ lm_logits = self.transformer.output_layer(hidden_states)
957
+ lm_logits = lm_logits.transpose(0, 1).contiguous()
958
+
959
+ loss = None
960
+ if labels is not None:
961
+ lm_logits = lm_logits.to(torch.float32)
962
+
963
+ # Shift so that tokens < n predict n
964
+ shift_logits = lm_logits[..., :-1, :].contiguous()
965
+ shift_labels = labels[..., 1:].contiguous()
966
+ # Flatten the tokens
967
+ loss_fct = CrossEntropyLoss(ignore_index=-100)
968
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
969
+
970
+ lm_logits = lm_logits.to(hidden_states.dtype)
971
+ loss = loss.to(hidden_states.dtype)
972
+
973
+ if not return_dict:
974
+ output = (lm_logits,) + transformer_outputs[1:]
975
+ return ((loss,) + output) if loss is not None else output
976
+
977
+ return CausalLMOutputWithPast(
978
+ loss=loss,
979
+ logits=lm_logits,
980
+ past_key_values=transformer_outputs.past_key_values,
981
+ hidden_states=transformer_outputs.hidden_states,
982
+ attentions=transformer_outputs.attentions,
983
+ )
984
+
985
+ @staticmethod
986
+ def _reorder_cache(
987
+ past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
988
+ ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
989
+ """
990
+ This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
991
+ [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
992
+ beam_idx at every generation step.
993
+
994
+ Output shares the same memory storage as `past`.
995
+ """
996
+ return tuple(
997
+ (
998
+ layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
999
+ layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
1000
+ )
1001
+ for layer_past in past
1002
+ )
1003
+
1004
+ def process_response(self, output, history):
1005
+ content = ""
1006
+ history = deepcopy(history)
1007
+ for response in output.split("<|assistant|>"):
1008
+ metadata, content = response.split("\n", maxsplit=1)
1009
+ if not metadata.strip():
1010
+ content = content.strip()
1011
+ history.append({"role": "assistant", "metadata": metadata, "content": content})
1012
+ content = content.replace("[[训练时间]]", "2023年")
1013
+ else:
1014
+ history.append({"role": "assistant", "metadata": metadata, "content": content})
1015
+ if history[0]["role"] == "system" and "tools" in history[0]:
1016
+ content = "\n".join(content.split("\n")[1:-1])
1017
+ def tool_call(**kwargs):
1018
+ return kwargs
1019
+ parameters = eval(content)
1020
+ content = {"name": metadata.strip(), "parameters": parameters}
1021
+ else:
1022
+ content = {"name": metadata.strip(), "content": content}
1023
+ return content, history
1024
+
1025
+ @torch.inference_mode()
1026
+ def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, role: str = "user",
1027
+ max_length: int = 8192, num_beams=1, do_sample=True, top_p=0.8, temperature=0.8, logits_processor=None,
1028
+ **kwargs):
1029
+ if history is None:
1030
+ history = []
1031
+ if logits_processor is None:
1032
+ logits_processor = LogitsProcessorList()
1033
+ logits_processor.append(InvalidScoreLogitsProcessor())
1034
+ gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
1035
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1036
+ inputs = tokenizer.build_chat_input(query, history=history, role=role)
1037
+ inputs = inputs.to(self.device)
1038
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
1039
+ tokenizer.get_command("<|observation|>")]
1040
+ outputs = self.generate(**inputs, **gen_kwargs, eos_token_id=eos_token_id)
1041
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
1042
+ response = tokenizer.decode(outputs)
1043
+ history.append({"role": role, "content": query})
1044
+ response, history = self.process_response(response, history)
1045
+ return response, history
1046
+
1047
+ @torch.inference_mode()
1048
+ def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, role: str = "user",
1049
+ past_key_values=None,max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8,
1050
+ logits_processor=None, return_past_key_values=False, **kwargs):
1051
+ if history is None:
1052
+ history = []
1053
+ if logits_processor is None:
1054
+ logits_processor = LogitsProcessorList()
1055
+ logits_processor.append(InvalidScoreLogitsProcessor())
1056
+ eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
1057
+ tokenizer.get_command("<|observation|>")]
1058
+ gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
1059
+ "temperature": temperature, "logits_processor": logits_processor, **kwargs}
1060
+ if past_key_values is None:
1061
+ inputs = tokenizer.build_chat_input(query, history=history, role=role)
1062
+ else:
1063
+ inputs = tokenizer.build_chat_input(query, role=role)
1064
+ inputs = inputs.to(self.device)
1065
+ if past_key_values is not None:
1066
+ past_length = past_key_values[0][0].shape[0]
1067
+ if self.transformer.pre_seq_len is not None:
1068
+ past_length -= self.transformer.pre_seq_len
1069
+ inputs.position_ids += past_length
1070
+ attention_mask = inputs.attention_mask
1071
+ attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
1072
+ inputs['attention_mask'] = attention_mask
1073
+ history.append({"role": role, "content": query})
1074
+ for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
1075
+ eos_token_id=eos_token_id, return_past_key_values=return_past_key_values,
1076
+ **gen_kwargs):
1077
+ if return_past_key_values:
1078
+ outputs, past_key_values = outputs
1079
+ outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
1080
+ response = tokenizer.decode(outputs)
1081
+ if response and response[-1] != "�":
1082
+ response, new_history = self.process_response(response, history)
1083
+ if return_past_key_values:
1084
+ yield response, new_history, past_key_values
1085
+ else:
1086
+ yield response, new_history
1087
+
1088
+ @torch.inference_mode()
1089
+ def stream_generate(
1090
+ self,
1091
+ input_ids,
1092
+ generation_config: Optional[GenerationConfig] = None,
1093
+ logits_processor: Optional[LogitsProcessorList] = None,
1094
+ stopping_criteria: Optional[StoppingCriteriaList] = None,
1095
+ prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
1096
+ return_past_key_values=False,
1097
+ **kwargs,
1098
+ ):
1099
+ batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
1100
+
1101
+ if generation_config is None:
1102
+ generation_config = self.generation_config
1103
+ generation_config = copy.deepcopy(generation_config)
1104
+ model_kwargs = generation_config.update(**kwargs)
1105
+ model_kwargs["use_cache"] = generation_config.use_cache
1106
+ bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
1107
+
1108
+ if isinstance(eos_token_id, int):
1109
+ eos_token_id = [eos_token_id]
1110
+ eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
1111
+
1112
+ has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
1113
+ if has_default_max_length and generation_config.max_new_tokens is None:
1114
+ warnings.warn(
1115
+ f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
1116
+ "This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
1117
+ " recommend using `max_new_tokens` to control the maximum length of the generation.",
1118
+ UserWarning,
1119
+ )
1120
+ elif generation_config.max_new_tokens is not None:
1121
+ generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
1122
+ if not has_default_max_length:
1123
+ logger.warn(
1124
+ f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
1125
+ f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
1126
+ "Please refer to the documentation for more information. "
1127
+ "(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
1128
+ UserWarning,
1129
+ )
1130
+
1131
+ if input_ids_seq_length >= generation_config.max_length:
1132
+ input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
1133
+ logger.warning(
1134
+ f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
1135
+ f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
1136
+ " increasing `max_new_tokens`."
1137
+ )
1138
+
1139
+ # 2. Set generation parameters if not already defined
1140
+ logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
1141
+ stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
1142
+
1143
+ logits_processor = self._get_logits_processor(
1144
+ generation_config=generation_config,
1145
+ input_ids_seq_length=input_ids_seq_length,
1146
+ encoder_input_ids=input_ids,
1147
+ prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
1148
+ logits_processor=logits_processor,
1149
+ )
1150
+
1151
+ stopping_criteria = self._get_stopping_criteria(
1152
+ generation_config=generation_config, stopping_criteria=stopping_criteria
1153
+ )
1154
+ logits_warper = self._get_logits_warper(generation_config)
1155
+
1156
+ unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
1157
+ scores = None
1158
+ while True:
1159
+ model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
1160
+ # forward pass to get next token
1161
+ outputs = self(
1162
+ **model_inputs,
1163
+ return_dict=True,
1164
+ output_attentions=False,
1165
+ output_hidden_states=False,
1166
+ )
1167
+
1168
+ next_token_logits = outputs.logits[:, -1, :]
1169
+
1170
+ # pre-process distribution
1171
+ next_token_scores = logits_processor(input_ids, next_token_logits)
1172
+ next_token_scores = logits_warper(input_ids, next_token_scores)
1173
+
1174
+ # sample
1175
+ probs = nn.functional.softmax(next_token_scores, dim=-1)
1176
+ if generation_config.do_sample:
1177
+ next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
1178
+ else:
1179
+ next_tokens = torch.argmax(probs, dim=-1)
1180
+ # update generated ids, model inputs, and length for next step
1181
+ input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
1182
+ model_kwargs = self._update_model_kwargs_for_generation(
1183
+ outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
1184
+ )
1185
+ unfinished_sequences = unfinished_sequences.mul(
1186
+ next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
1187
+ )
1188
+ if return_past_key_values:
1189
+ yield input_ids, outputs.past_key_values
1190
+ else:
1191
+ yield input_ids
1192
+ # stop when each sentence is finished, or if we exceed the maximum length
1193
+ if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
1194
+ break
1195
+
1196
+ def quantize(self, bits: int, empty_init=False, device=None, **kwargs):
1197
+ if bits == 0:
1198
+ return
1199
+
1200
+ from .quantization import quantize
1201
+
1202
+ if self.quantized:
1203
+ logger.info("Already quantized.")
1204
+ return self
1205
+
1206
+ self.quantized = True
1207
+
1208
+ self.config.quantization_bit = bits
1209
+
1210
+ self.transformer.encoder = quantize(self.transformer.encoder, bits, empty_init=empty_init, device=device,
1211
+ **kwargs)
1212
+ return self
1213
+
1214
+
1215
+ class ChatGLMForSequenceClassification(ChatGLMPreTrainedModel):
1216
+ def __init__(self, config: ChatGLMConfig, empty_init=True, device=None):
1217
+ super().__init__(config)
1218
+
1219
+ self.num_labels = config.num_labels
1220
+ self.transformer = ChatGLMModel(config, empty_init=empty_init, device=device)
1221
+
1222
+ self.classifier_head = nn.Linear(config.hidden_size, config.num_labels, bias=True, dtype=torch.half)
1223
+ if config.classifier_dropout is not None:
1224
+ self.dropout = nn.Dropout(config.classifier_dropout)
1225
+ else:
1226
+ self.dropout = None
1227
+ self.config = config
1228
+
1229
+ if self.config.quantization_bit:
1230
+ self.quantize(self.config.quantization_bit, empty_init=True)
1231
+
1232
+ def forward(
1233
+ self,
1234
+ input_ids: Optional[torch.LongTensor] = None,
1235
+ position_ids: Optional[torch.LongTensor] = None,
1236
+ attention_mask: Optional[torch.Tensor] = None,
1237
+ full_attention_mask: Optional[torch.Tensor] = None,
1238
+ past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
1239
+ inputs_embeds: Optional[torch.LongTensor] = None,
1240
+ labels: Optional[torch.LongTensor] = None,
1241
+ use_cache: Optional[bool] = None,
1242
+ output_hidden_states: Optional[bool] = None,
1243
+ return_dict: Optional[bool] = None,
1244
+ ) -> Union[Tuple[torch.Tensor, ...], SequenceClassifierOutputWithPast]:
1245
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1246
+
1247
+ transformer_outputs = self.transformer(
1248
+ input_ids=input_ids,
1249
+ position_ids=position_ids,
1250
+ attention_mask=attention_mask,
1251
+ full_attention_mask=full_attention_mask,
1252
+ past_key_values=past_key_values,
1253
+ inputs_embeds=inputs_embeds,
1254
+ use_cache=use_cache,
1255
+ output_hidden_states=output_hidden_states,
1256
+ return_dict=return_dict,
1257
+ )
1258
+
1259
+ hidden_states = transformer_outputs[0]
1260
+ pooled_hidden_states = hidden_states[-1]
1261
+ if self.dropout is not None:
1262
+ pooled_hidden_states = self.dropout(pooled_hidden_states)
1263
+ logits = self.classifier_head(pooled_hidden_states)
1264
+
1265
+ loss = None
1266
+ if labels is not None:
1267
+ if self.config.problem_type is None:
1268
+ if self.num_labels == 1:
1269
+ self.config.problem_type = "regression"
1270
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1271
+ self.config.problem_type = "single_label_classification"
1272
+ else:
1273
+ self.config.problem_type = "multi_label_classification"
1274
+
1275
+ if self.config.problem_type == "regression":
1276
+ loss_fct = MSELoss()
1277
+ if self.num_labels == 1:
1278
+ loss = loss_fct(logits.squeeze().float(), labels.squeeze())
1279
+ else:
1280
+ loss = loss_fct(logits.float(), labels)
1281
+ elif self.config.problem_type == "single_label_classification":
1282
+ loss_fct = CrossEntropyLoss()
1283
+ loss = loss_fct(logits.view(-1, self.num_labels).float(), labels.view(-1))
1284
+ elif self.config.problem_type == "multi_label_classification":
1285
+ loss_fct = BCEWithLogitsLoss()
1286
+ loss = loss_fct(logits.float(), labels.view(-1, self.num_labels))
1287
+
1288
+ if not return_dict:
1289
+ output = (logits,) + transformer_outputs[1:]
1290
+ return ((loss,) + output) if loss is not None else output
1291
+
1292
+ return SequenceClassifierOutputWithPast(
1293
+ loss=loss,
1294
+ logits=logits,
1295
+ past_key_values=transformer_outputs.past_key_values,
1296
+ hidden_states=transformer_outputs.hidden_states,
1297
+ attentions=transformer_outputs.attentions,
1298
+ )
kolors/models/tokenization_chatglm.py ADDED
@@ -0,0 +1,300 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import re
4
+ from typing import List, Optional, Union, Dict
5
+ from sentencepiece import SentencePieceProcessor
6
+ from transformers import PreTrainedTokenizer
7
+ from transformers.utils import logging, PaddingStrategy
8
+ from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
9
+
10
+
11
+ class SPTokenizer:
12
+ def __init__(self, model_path: str):
13
+ # reload tokenizer
14
+ assert os.path.isfile(model_path), model_path
15
+ self.sp_model = SentencePieceProcessor(model_file=model_path)
16
+
17
+ # BOS / EOS token IDs
18
+ self.n_words: int = self.sp_model.vocab_size()
19
+ self.bos_id: int = self.sp_model.bos_id()
20
+ self.eos_id: int = self.sp_model.eos_id()
21
+ self.pad_id: int = self.sp_model.unk_id()
22
+ assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
23
+
24
+ role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
25
+ special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
26
+ self.special_tokens = {}
27
+ self.index_special_tokens = {}
28
+ for token in special_tokens:
29
+ self.special_tokens[token] = self.n_words
30
+ self.index_special_tokens[self.n_words] = token
31
+ self.n_words += 1
32
+ self.role_special_token_expression = "|".join([re.escape(token) for token in role_special_tokens])
33
+
34
+ def tokenize(self, s: str, encode_special_tokens=False):
35
+ if encode_special_tokens:
36
+ last_index = 0
37
+ t = []
38
+ for match in re.finditer(self.role_special_token_expression, s):
39
+ if last_index < match.start():
40
+ t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()]))
41
+ t.append(s[match.start():match.end()])
42
+ last_index = match.end()
43
+ if last_index < len(s):
44
+ t.extend(self.sp_model.EncodeAsPieces(s[last_index:]))
45
+ return t
46
+ else:
47
+ return self.sp_model.EncodeAsPieces(s)
48
+
49
+ def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]:
50
+ assert type(s) is str
51
+ t = self.sp_model.encode(s)
52
+ if bos:
53
+ t = [self.bos_id] + t
54
+ if eos:
55
+ t = t + [self.eos_id]
56
+ return t
57
+
58
+ def decode(self, t: List[int]) -> str:
59
+ text, buffer = "", []
60
+ for token in t:
61
+ if token in self.index_special_tokens:
62
+ if buffer:
63
+ text += self.sp_model.decode(buffer)
64
+ buffer = []
65
+ text += self.index_special_tokens[token]
66
+ else:
67
+ buffer.append(token)
68
+ if buffer:
69
+ text += self.sp_model.decode(buffer)
70
+ return text
71
+
72
+ def decode_tokens(self, tokens: List[str]) -> str:
73
+ text = self.sp_model.DecodePieces(tokens)
74
+ return text
75
+
76
+ def convert_token_to_id(self, token):
77
+ """ Converts a token (str) in an id using the vocab. """
78
+ if token in self.special_tokens:
79
+ return self.special_tokens[token]
80
+ return self.sp_model.PieceToId(token)
81
+
82
+ def convert_id_to_token(self, index):
83
+ """Converts an index (integer) in a token (str) using the vocab."""
84
+ if index in self.index_special_tokens:
85
+ return self.index_special_tokens[index]
86
+ if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0:
87
+ return ""
88
+ return self.sp_model.IdToPiece(index)
89
+
90
+
91
+ class ChatGLMTokenizer(PreTrainedTokenizer):
92
+ vocab_files_names = {"vocab_file": "tokenizer.model"}
93
+
94
+ model_input_names = ["input_ids", "attention_mask", "position_ids"]
95
+
96
+ def __init__(self, vocab_file, padding_side="left", clean_up_tokenization_spaces=False, encode_special_tokens=False,
97
+ **kwargs):
98
+ self.name = "GLMTokenizer"
99
+
100
+ self.vocab_file = vocab_file
101
+ self.tokenizer = SPTokenizer(vocab_file)
102
+ self.special_tokens = {
103
+ "<bos>": self.tokenizer.bos_id,
104
+ "<eos>": self.tokenizer.eos_id,
105
+ "<pad>": self.tokenizer.pad_id
106
+ }
107
+ self.encode_special_tokens = encode_special_tokens
108
+ super().__init__(padding_side=padding_side, clean_up_tokenization_spaces=clean_up_tokenization_spaces,
109
+ encode_special_tokens=encode_special_tokens,
110
+ **kwargs)
111
+
112
+ def get_command(self, token):
113
+ if token in self.special_tokens:
114
+ return self.special_tokens[token]
115
+ assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}"
116
+ return self.tokenizer.special_tokens[token]
117
+
118
+ @property
119
+ def unk_token(self) -> str:
120
+ return "<unk>"
121
+
122
+ @property
123
+ def pad_token(self) -> str:
124
+ return "<unk>"
125
+
126
+ @property
127
+ def pad_token_id(self):
128
+ return self.get_command("<pad>")
129
+
130
+ @property
131
+ def eos_token(self) -> str:
132
+ return "</s>"
133
+
134
+ @property
135
+ def eos_token_id(self):
136
+ return self.get_command("<eos>")
137
+
138
+ @property
139
+ def vocab_size(self):
140
+ return self.tokenizer.n_words
141
+
142
+ def get_vocab(self):
143
+ """ Returns vocab as a dict """
144
+ vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
145
+ vocab.update(self.added_tokens_encoder)
146
+ return vocab
147
+
148
+ def _tokenize(self, text, **kwargs):
149
+ return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens)
150
+
151
+ def _convert_token_to_id(self, token):
152
+ """ Converts a token (str) in an id using the vocab. """
153
+ return self.tokenizer.convert_token_to_id(token)
154
+
155
+ def _convert_id_to_token(self, index):
156
+ """Converts an index (integer) in a token (str) using the vocab."""
157
+ return self.tokenizer.convert_id_to_token(index)
158
+
159
+ def convert_tokens_to_string(self, tokens: List[str]) -> str:
160
+ return self.tokenizer.decode_tokens(tokens)
161
+
162
+ def save_vocabulary(self, save_directory, filename_prefix=None):
163
+ """
164
+ Save the vocabulary and special tokens file to a directory.
165
+
166
+ Args:
167
+ save_directory (`str`):
168
+ The directory in which to save the vocabulary.
169
+ filename_prefix (`str`, *optional*):
170
+ An optional prefix to add to the named of the saved files.
171
+
172
+ Returns:
173
+ `Tuple(str)`: Paths to the files saved.
174
+ """
175
+ if os.path.isdir(save_directory):
176
+ vocab_file = os.path.join(
177
+ save_directory, self.vocab_files_names["vocab_file"]
178
+ )
179
+ else:
180
+ vocab_file = save_directory
181
+
182
+ with open(self.vocab_file, 'rb') as fin:
183
+ proto_str = fin.read()
184
+
185
+ with open(vocab_file, "wb") as writer:
186
+ writer.write(proto_str)
187
+
188
+ return (vocab_file,)
189
+
190
+ def get_prefix_tokens(self):
191
+ prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")]
192
+ return prefix_tokens
193
+
194
+ def build_single_message(self, role, metadata, message):
195
+ assert role in ["system", "user", "assistant", "observation"], role
196
+ role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n")
197
+ message_tokens = self.tokenizer.encode(message)
198
+ tokens = role_tokens + message_tokens
199
+ return tokens
200
+
201
+ def build_chat_input(self, query, history=None, role="user"):
202
+ if history is None:
203
+ history = []
204
+ input_ids = []
205
+ for item in history:
206
+ content = item["content"]
207
+ if item["role"] == "system" and "tools" in item:
208
+ content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False)
209
+ input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content))
210
+ input_ids.extend(self.build_single_message(role, "", query))
211
+ input_ids.extend([self.get_command("<|assistant|>")])
212
+ return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True)
213
+
214
+ def build_inputs_with_special_tokens(
215
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
216
+ ) -> List[int]:
217
+ """
218
+ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
219
+ adding special tokens. A BERT sequence has the following format:
220
+
221
+ - single sequence: `[CLS] X [SEP]`
222
+ - pair of sequences: `[CLS] A [SEP] B [SEP]`
223
+
224
+ Args:
225
+ token_ids_0 (`List[int]`):
226
+ List of IDs to which the special tokens will be added.
227
+ token_ids_1 (`List[int]`, *optional*):
228
+ Optional second list of IDs for sequence pairs.
229
+
230
+ Returns:
231
+ `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
232
+ """
233
+ prefix_tokens = self.get_prefix_tokens()
234
+ token_ids_0 = prefix_tokens + token_ids_0
235
+ if token_ids_1 is not None:
236
+ token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")]
237
+ return token_ids_0
238
+
239
+ def _pad(
240
+ self,
241
+ encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
242
+ max_length: Optional[int] = None,
243
+ padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
244
+ pad_to_multiple_of: Optional[int] = None,
245
+ return_attention_mask: Optional[bool] = None,
246
+ ) -> dict:
247
+ """
248
+ Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
249
+
250
+ Args:
251
+ encoded_inputs:
252
+ Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
253
+ max_length: maximum length of the returned list and optionally padding length (see below).
254
+ Will truncate by taking into account the special tokens.
255
+ padding_strategy: PaddingStrategy to use for padding.
256
+
257
+ - PaddingStrategy.LONGEST Pad to the longest sequence in the batch
258
+ - PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
259
+ - PaddingStrategy.DO_NOT_PAD: Do not pad
260
+ The tokenizer padding sides are defined in self.padding_side:
261
+
262
+ - 'left': pads on the left of the sequences
263
+ - 'right': pads on the right of the sequences
264
+ pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
265
+ This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
266
+ `>= 7.5` (Volta).
267
+ return_attention_mask:
268
+ (optional) Set to False to avoid returning attention mask (default: set to model specifics)
269
+ """
270
+ # Load from model defaults
271
+ assert self.padding_side == "left"
272
+
273
+ required_input = encoded_inputs[self.model_input_names[0]]
274
+ seq_length = len(required_input)
275
+
276
+ if padding_strategy == PaddingStrategy.LONGEST:
277
+ max_length = len(required_input)
278
+
279
+ if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
280
+ max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
281
+
282
+ needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
283
+
284
+ # Initialize attention mask if not present.
285
+ if "attention_mask" not in encoded_inputs:
286
+ encoded_inputs["attention_mask"] = [1] * seq_length
287
+
288
+ if "position_ids" not in encoded_inputs:
289
+ encoded_inputs["position_ids"] = list(range(seq_length))
290
+
291
+ if needs_to_be_padded:
292
+ difference = max_length - len(required_input)
293
+
294
+ if "attention_mask" in encoded_inputs:
295
+ encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
296
+ if "position_ids" in encoded_inputs:
297
+ encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"]
298
+ encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
299
+
300
+ return encoded_inputs
kolors/models/unet_2d_condition.py ADDED
@@ -0,0 +1,1318 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from dataclasses import dataclass
15
+ from typing import Any, Dict, List, Optional, Tuple, Union
16
+
17
+ import torch
18
+ import torch.nn as nn
19
+ import torch.utils.checkpoint
20
+
21
+ from diffusers.configuration_utils import ConfigMixin, register_to_config
22
+ from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
23
+ from diffusers.loaders.single_file_model import FromOriginalModelMixin
24
+ from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
25
+ from diffusers.models.activations import get_activation
26
+ from diffusers.models.attention_processor import (
27
+ ADDED_KV_ATTENTION_PROCESSORS,
28
+ CROSS_ATTENTION_PROCESSORS,
29
+ Attention,
30
+ AttentionProcessor,
31
+ AttnAddedKVProcessor,
32
+ AttnProcessor,
33
+ )
34
+ from diffusers.models.embeddings import (
35
+ GaussianFourierProjection,
36
+ GLIGENTextBoundingboxProjection,
37
+ ImageHintTimeEmbedding,
38
+ ImageProjection,
39
+ ImageTimeEmbedding,
40
+ TextImageProjection,
41
+ TextImageTimeEmbedding,
42
+ TextTimeEmbedding,
43
+ TimestepEmbedding,
44
+ Timesteps,
45
+ )
46
+ from diffusers.models.modeling_utils import ModelMixin
47
+
48
+ try:
49
+ from diffusers.models.unet_2d_blocks import (
50
+ get_down_block,
51
+ get_mid_block,
52
+ get_up_block,
53
+ )
54
+ except:
55
+ from diffusers.models.unets.unet_2d_blocks import (
56
+ get_down_block,
57
+ get_mid_block,
58
+ get_up_block,
59
+ )
60
+
61
+
62
+
63
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
64
+
65
+
66
+ @dataclass
67
+ class UNet2DConditionOutput(BaseOutput):
68
+ """
69
+ The output of [`UNet2DConditionModel`].
70
+
71
+ Args:
72
+ sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
73
+ The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
74
+ """
75
+
76
+ sample: torch.Tensor = None
77
+
78
+
79
+ class UNet2DConditionModel(
80
+ ModelMixin, ConfigMixin, FromOriginalModelMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin
81
+ ):
82
+ r"""
83
+ A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
84
+ shaped output.
85
+
86
+ This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
87
+ for all models (such as downloading or saving).
88
+
89
+ Parameters:
90
+ sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
91
+ Height and width of input/output sample.
92
+ in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
93
+ out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
94
+ center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
95
+ flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
96
+ Whether to flip the sin to cos in the time embedding.
97
+ freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
98
+ down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
99
+ The tuple of downsample blocks to use.
100
+ mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
101
+ Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
102
+ `UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
103
+ up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
104
+ The tuple of upsample blocks to use.
105
+ only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
106
+ Whether to include self-attention in the basic transformer blocks, see
107
+ [`~models.attention.BasicTransformerBlock`].
108
+ block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
109
+ The tuple of output channels for each block.
110
+ layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
111
+ downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
112
+ mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
113
+ dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
114
+ act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
115
+ norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
116
+ If `None`, normalization and activation layers is skipped in post-processing.
117
+ norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
118
+ cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
119
+ The dimension of the cross attention features.
120
+ transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
121
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
122
+ [`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
123
+ [`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
124
+ reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
125
+ The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
126
+ blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
127
+ [`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
128
+ [`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
129
+ encoder_hid_dim (`int`, *optional*, defaults to None):
130
+ If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
131
+ dimension to `cross_attention_dim`.
132
+ encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
133
+ If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
134
+ embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
135
+ attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
136
+ num_attention_heads (`int`, *optional*):
137
+ The number of attention heads. If not defined, defaults to `attention_head_dim`
138
+ resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
139
+ for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
140
+ class_embed_type (`str`, *optional*, defaults to `None`):
141
+ The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
142
+ `"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
143
+ addition_embed_type (`str`, *optional*, defaults to `None`):
144
+ Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
145
+ "text". "text" will use the `TextTimeEmbedding` layer.
146
+ addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
147
+ Dimension for the timestep embeddings.
148
+ num_class_embeds (`int`, *optional*, defaults to `None`):
149
+ Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
150
+ class conditioning with `class_embed_type` equal to `None`.
151
+ time_embedding_type (`str`, *optional*, defaults to `positional`):
152
+ The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
153
+ time_embedding_dim (`int`, *optional*, defaults to `None`):
154
+ An optional override for the dimension of the projected time embedding.
155
+ time_embedding_act_fn (`str`, *optional*, defaults to `None`):
156
+ Optional activation function to use only once on the time embeddings before they are passed to the rest of
157
+ the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
158
+ timestep_post_act (`str`, *optional*, defaults to `None`):
159
+ The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
160
+ time_cond_proj_dim (`int`, *optional*, defaults to `None`):
161
+ The dimension of `cond_proj` layer in the timestep embedding.
162
+ conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
163
+ conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
164
+ projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
165
+ `class_embed_type="projection"`. Required when `class_embed_type="projection"`.
166
+ class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
167
+ embeddings with the class embeddings.
168
+ mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
169
+ Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
170
+ `only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
171
+ `only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
172
+ otherwise.
173
+ """
174
+
175
+ _supports_gradient_checkpointing = True
176
+ _no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D"]
177
+
178
+ @register_to_config
179
+ def __init__(
180
+ self,
181
+ sample_size: Optional[int] = None,
182
+ in_channels: int = 4,
183
+ out_channels: int = 4,
184
+ center_input_sample: bool = False,
185
+ flip_sin_to_cos: bool = True,
186
+ freq_shift: int = 0,
187
+ down_block_types: Tuple[str] = (
188
+ "CrossAttnDownBlock2D",
189
+ "CrossAttnDownBlock2D",
190
+ "CrossAttnDownBlock2D",
191
+ "DownBlock2D",
192
+ ),
193
+ mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
194
+ up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
195
+ only_cross_attention: Union[bool, Tuple[bool]] = False,
196
+ block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
197
+ layers_per_block: Union[int, Tuple[int]] = 2,
198
+ downsample_padding: int = 1,
199
+ mid_block_scale_factor: float = 1,
200
+ dropout: float = 0.0,
201
+ act_fn: str = "silu",
202
+ norm_num_groups: Optional[int] = 32,
203
+ norm_eps: float = 1e-5,
204
+ cross_attention_dim: Union[int, Tuple[int]] = 1280,
205
+ transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
206
+ reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
207
+ encoder_hid_dim: Optional[int] = None,
208
+ encoder_hid_dim_type: Optional[str] = None,
209
+ attention_head_dim: Union[int, Tuple[int]] = 8,
210
+ num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
211
+ dual_cross_attention: bool = False,
212
+ use_linear_projection: bool = False,
213
+ class_embed_type: Optional[str] = None,
214
+ addition_embed_type: Optional[str] = None,
215
+ addition_time_embed_dim: Optional[int] = None,
216
+ num_class_embeds: Optional[int] = None,
217
+ upcast_attention: bool = False,
218
+ resnet_time_scale_shift: str = "default",
219
+ resnet_skip_time_act: bool = False,
220
+ resnet_out_scale_factor: float = 1.0,
221
+ time_embedding_type: str = "positional",
222
+ time_embedding_dim: Optional[int] = None,
223
+ time_embedding_act_fn: Optional[str] = None,
224
+ timestep_post_act: Optional[str] = None,
225
+ time_cond_proj_dim: Optional[int] = None,
226
+ conv_in_kernel: int = 3,
227
+ conv_out_kernel: int = 3,
228
+ projection_class_embeddings_input_dim: Optional[int] = None,
229
+ attention_type: str = "default",
230
+ class_embeddings_concat: bool = False,
231
+ mid_block_only_cross_attention: Optional[bool] = None,
232
+ cross_attention_norm: Optional[str] = None,
233
+ addition_embed_type_num_heads: int = 64,
234
+ ):
235
+ super().__init__()
236
+
237
+ self.sample_size = sample_size
238
+
239
+ if num_attention_heads is not None:
240
+ raise ValueError(
241
+ "At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
242
+ )
243
+
244
+ # If `num_attention_heads` is not defined (which is the case for most models)
245
+ # it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
246
+ # The reason for this behavior is to correct for incorrectly named variables that were introduced
247
+ # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
248
+ # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
249
+ # which is why we correct for the naming here.
250
+ num_attention_heads = num_attention_heads or attention_head_dim
251
+
252
+ # Check inputs
253
+ self._check_config(
254
+ down_block_types=down_block_types,
255
+ up_block_types=up_block_types,
256
+ only_cross_attention=only_cross_attention,
257
+ block_out_channels=block_out_channels,
258
+ layers_per_block=layers_per_block,
259
+ cross_attention_dim=cross_attention_dim,
260
+ transformer_layers_per_block=transformer_layers_per_block,
261
+ reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
262
+ attention_head_dim=attention_head_dim,
263
+ num_attention_heads=num_attention_heads,
264
+ )
265
+
266
+ # input
267
+ conv_in_padding = (conv_in_kernel - 1) // 2
268
+ self.conv_in = nn.Conv2d(
269
+ in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
270
+ )
271
+
272
+ # time
273
+ time_embed_dim, timestep_input_dim = self._set_time_proj(
274
+ time_embedding_type,
275
+ block_out_channels=block_out_channels,
276
+ flip_sin_to_cos=flip_sin_to_cos,
277
+ freq_shift=freq_shift,
278
+ time_embedding_dim=time_embedding_dim,
279
+ )
280
+
281
+ self.time_embedding = TimestepEmbedding(
282
+ timestep_input_dim,
283
+ time_embed_dim,
284
+ act_fn=act_fn,
285
+ post_act_fn=timestep_post_act,
286
+ cond_proj_dim=time_cond_proj_dim,
287
+ )
288
+
289
+ self._set_encoder_hid_proj(
290
+ encoder_hid_dim_type,
291
+ cross_attention_dim=cross_attention_dim,
292
+ encoder_hid_dim=encoder_hid_dim,
293
+ )
294
+
295
+ # class embedding
296
+ self._set_class_embedding(
297
+ class_embed_type,
298
+ act_fn=act_fn,
299
+ num_class_embeds=num_class_embeds,
300
+ projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
301
+ time_embed_dim=time_embed_dim,
302
+ timestep_input_dim=timestep_input_dim,
303
+ )
304
+
305
+ self._set_add_embedding(
306
+ addition_embed_type,
307
+ addition_embed_type_num_heads=addition_embed_type_num_heads,
308
+ addition_time_embed_dim=addition_time_embed_dim,
309
+ cross_attention_dim=cross_attention_dim,
310
+ encoder_hid_dim=encoder_hid_dim,
311
+ flip_sin_to_cos=flip_sin_to_cos,
312
+ freq_shift=freq_shift,
313
+ projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
314
+ time_embed_dim=time_embed_dim,
315
+ )
316
+
317
+ if time_embedding_act_fn is None:
318
+ self.time_embed_act = None
319
+ else:
320
+ self.time_embed_act = get_activation(time_embedding_act_fn)
321
+
322
+ self.down_blocks = nn.ModuleList([])
323
+ self.up_blocks = nn.ModuleList([])
324
+
325
+ if isinstance(only_cross_attention, bool):
326
+ if mid_block_only_cross_attention is None:
327
+ mid_block_only_cross_attention = only_cross_attention
328
+
329
+ only_cross_attention = [only_cross_attention] * len(down_block_types)
330
+
331
+ if mid_block_only_cross_attention is None:
332
+ mid_block_only_cross_attention = False
333
+
334
+ if isinstance(num_attention_heads, int):
335
+ num_attention_heads = (num_attention_heads,) * len(down_block_types)
336
+
337
+ if isinstance(attention_head_dim, int):
338
+ attention_head_dim = (attention_head_dim,) * len(down_block_types)
339
+
340
+ if isinstance(cross_attention_dim, int):
341
+ cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
342
+
343
+ if isinstance(layers_per_block, int):
344
+ layers_per_block = [layers_per_block] * len(down_block_types)
345
+
346
+ if isinstance(transformer_layers_per_block, int):
347
+ transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
348
+
349
+ if class_embeddings_concat:
350
+ # The time embeddings are concatenated with the class embeddings. The dimension of the
351
+ # time embeddings passed to the down, middle, and up blocks is twice the dimension of the
352
+ # regular time embeddings
353
+ blocks_time_embed_dim = time_embed_dim * 2
354
+ else:
355
+ blocks_time_embed_dim = time_embed_dim
356
+
357
+ # down
358
+ output_channel = block_out_channels[0]
359
+ for i, down_block_type in enumerate(down_block_types):
360
+ input_channel = output_channel
361
+ output_channel = block_out_channels[i]
362
+ is_final_block = i == len(block_out_channels) - 1
363
+
364
+ down_block = get_down_block(
365
+ down_block_type,
366
+ num_layers=layers_per_block[i],
367
+ transformer_layers_per_block=transformer_layers_per_block[i],
368
+ in_channels=input_channel,
369
+ out_channels=output_channel,
370
+ temb_channels=blocks_time_embed_dim,
371
+ add_downsample=not is_final_block,
372
+ resnet_eps=norm_eps,
373
+ resnet_act_fn=act_fn,
374
+ resnet_groups=norm_num_groups,
375
+ cross_attention_dim=cross_attention_dim[i],
376
+ num_attention_heads=num_attention_heads[i],
377
+ downsample_padding=downsample_padding,
378
+ dual_cross_attention=dual_cross_attention,
379
+ use_linear_projection=use_linear_projection,
380
+ only_cross_attention=only_cross_attention[i],
381
+ upcast_attention=upcast_attention,
382
+ resnet_time_scale_shift=resnet_time_scale_shift,
383
+ attention_type=attention_type,
384
+ resnet_skip_time_act=resnet_skip_time_act,
385
+ resnet_out_scale_factor=resnet_out_scale_factor,
386
+ cross_attention_norm=cross_attention_norm,
387
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
388
+ dropout=dropout,
389
+ )
390
+ self.down_blocks.append(down_block)
391
+
392
+ # mid
393
+ self.mid_block = get_mid_block(
394
+ mid_block_type,
395
+ temb_channels=blocks_time_embed_dim,
396
+ in_channels=block_out_channels[-1],
397
+ resnet_eps=norm_eps,
398
+ resnet_act_fn=act_fn,
399
+ resnet_groups=norm_num_groups,
400
+ output_scale_factor=mid_block_scale_factor,
401
+ transformer_layers_per_block=transformer_layers_per_block[-1],
402
+ num_attention_heads=num_attention_heads[-1],
403
+ cross_attention_dim=cross_attention_dim[-1],
404
+ dual_cross_attention=dual_cross_attention,
405
+ use_linear_projection=use_linear_projection,
406
+ mid_block_only_cross_attention=mid_block_only_cross_attention,
407
+ upcast_attention=upcast_attention,
408
+ resnet_time_scale_shift=resnet_time_scale_shift,
409
+ attention_type=attention_type,
410
+ resnet_skip_time_act=resnet_skip_time_act,
411
+ cross_attention_norm=cross_attention_norm,
412
+ attention_head_dim=attention_head_dim[-1],
413
+ dropout=dropout,
414
+ )
415
+
416
+ # count how many layers upsample the images
417
+ self.num_upsamplers = 0
418
+
419
+ # up
420
+ reversed_block_out_channels = list(reversed(block_out_channels))
421
+ reversed_num_attention_heads = list(reversed(num_attention_heads))
422
+ reversed_layers_per_block = list(reversed(layers_per_block))
423
+ reversed_cross_attention_dim = list(reversed(cross_attention_dim))
424
+ reversed_transformer_layers_per_block = (
425
+ list(reversed(transformer_layers_per_block))
426
+ if reverse_transformer_layers_per_block is None
427
+ else reverse_transformer_layers_per_block
428
+ )
429
+ only_cross_attention = list(reversed(only_cross_attention))
430
+
431
+ output_channel = reversed_block_out_channels[0]
432
+ for i, up_block_type in enumerate(up_block_types):
433
+ is_final_block = i == len(block_out_channels) - 1
434
+
435
+ prev_output_channel = output_channel
436
+ output_channel = reversed_block_out_channels[i]
437
+ input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
438
+
439
+ # add upsample block for all BUT final layer
440
+ if not is_final_block:
441
+ add_upsample = True
442
+ self.num_upsamplers += 1
443
+ else:
444
+ add_upsample = False
445
+
446
+ up_block = get_up_block(
447
+ up_block_type,
448
+ num_layers=reversed_layers_per_block[i] + 1,
449
+ transformer_layers_per_block=reversed_transformer_layers_per_block[i],
450
+ in_channels=input_channel,
451
+ out_channels=output_channel,
452
+ prev_output_channel=prev_output_channel,
453
+ temb_channels=blocks_time_embed_dim,
454
+ add_upsample=add_upsample,
455
+ resnet_eps=norm_eps,
456
+ resnet_act_fn=act_fn,
457
+ resolution_idx=i,
458
+ resnet_groups=norm_num_groups,
459
+ cross_attention_dim=reversed_cross_attention_dim[i],
460
+ num_attention_heads=reversed_num_attention_heads[i],
461
+ dual_cross_attention=dual_cross_attention,
462
+ use_linear_projection=use_linear_projection,
463
+ only_cross_attention=only_cross_attention[i],
464
+ upcast_attention=upcast_attention,
465
+ resnet_time_scale_shift=resnet_time_scale_shift,
466
+ attention_type=attention_type,
467
+ resnet_skip_time_act=resnet_skip_time_act,
468
+ resnet_out_scale_factor=resnet_out_scale_factor,
469
+ cross_attention_norm=cross_attention_norm,
470
+ attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
471
+ dropout=dropout,
472
+ )
473
+ self.up_blocks.append(up_block)
474
+ prev_output_channel = output_channel
475
+
476
+ # out
477
+ if norm_num_groups is not None:
478
+ self.conv_norm_out = nn.GroupNorm(
479
+ num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
480
+ )
481
+
482
+ self.conv_act = get_activation(act_fn)
483
+
484
+ else:
485
+ self.conv_norm_out = None
486
+ self.conv_act = None
487
+
488
+ conv_out_padding = (conv_out_kernel - 1) // 2
489
+ self.conv_out = nn.Conv2d(
490
+ block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
491
+ )
492
+
493
+ self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
494
+
495
+ def _check_config(
496
+ self,
497
+ down_block_types: Tuple[str],
498
+ up_block_types: Tuple[str],
499
+ only_cross_attention: Union[bool, Tuple[bool]],
500
+ block_out_channels: Tuple[int],
501
+ layers_per_block: Union[int, Tuple[int]],
502
+ cross_attention_dim: Union[int, Tuple[int]],
503
+ transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
504
+ reverse_transformer_layers_per_block: bool,
505
+ attention_head_dim: int,
506
+ num_attention_heads: Optional[Union[int, Tuple[int]]],
507
+ ):
508
+ if len(down_block_types) != len(up_block_types):
509
+ raise ValueError(
510
+ f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
511
+ )
512
+
513
+ if len(block_out_channels) != len(down_block_types):
514
+ raise ValueError(
515
+ f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
516
+ )
517
+
518
+ if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
519
+ raise ValueError(
520
+ f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
521
+ )
522
+
523
+ if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
524
+ raise ValueError(
525
+ f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
526
+ )
527
+
528
+ if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
529
+ raise ValueError(
530
+ f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
531
+ )
532
+
533
+ if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
534
+ raise ValueError(
535
+ f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
536
+ )
537
+
538
+ if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
539
+ raise ValueError(
540
+ f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
541
+ )
542
+ if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
543
+ for layer_number_per_block in transformer_layers_per_block:
544
+ if isinstance(layer_number_per_block, list):
545
+ raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
546
+
547
+ def _set_time_proj(
548
+ self,
549
+ time_embedding_type: str,
550
+ block_out_channels: int,
551
+ flip_sin_to_cos: bool,
552
+ freq_shift: float,
553
+ time_embedding_dim: int,
554
+ ) -> Tuple[int, int]:
555
+ if time_embedding_type == "fourier":
556
+ time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
557
+ if time_embed_dim % 2 != 0:
558
+ raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
559
+ self.time_proj = GaussianFourierProjection(
560
+ time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
561
+ )
562
+ timestep_input_dim = time_embed_dim
563
+ elif time_embedding_type == "positional":
564
+ time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
565
+
566
+ self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
567
+ timestep_input_dim = block_out_channels[0]
568
+ else:
569
+ raise ValueError(
570
+ f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
571
+ )
572
+
573
+ return time_embed_dim, timestep_input_dim
574
+
575
+ def _set_encoder_hid_proj(
576
+ self,
577
+ encoder_hid_dim_type: Optional[str],
578
+ cross_attention_dim: Union[int, Tuple[int]],
579
+ encoder_hid_dim: Optional[int],
580
+ ):
581
+ if encoder_hid_dim_type is None and encoder_hid_dim is not None:
582
+ encoder_hid_dim_type = "text_proj"
583
+ self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
584
+ logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
585
+
586
+ if encoder_hid_dim is None and encoder_hid_dim_type is not None:
587
+ raise ValueError(
588
+ f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
589
+ )
590
+
591
+ if encoder_hid_dim_type == "text_proj":
592
+ self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
593
+ elif encoder_hid_dim_type == "text_image_proj":
594
+ # image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
595
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
596
+ # case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
597
+ self.encoder_hid_proj = TextImageProjection(
598
+ text_embed_dim=encoder_hid_dim,
599
+ image_embed_dim=cross_attention_dim,
600
+ cross_attention_dim=cross_attention_dim,
601
+ )
602
+ elif encoder_hid_dim_type == "image_proj":
603
+ # Kandinsky 2.2
604
+ self.encoder_hid_proj = ImageProjection(
605
+ image_embed_dim=encoder_hid_dim,
606
+ cross_attention_dim=cross_attention_dim,
607
+ )
608
+ elif encoder_hid_dim_type is not None:
609
+ raise ValueError(
610
+ f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
611
+ )
612
+ else:
613
+ self.encoder_hid_proj = None
614
+
615
+ def _set_class_embedding(
616
+ self,
617
+ class_embed_type: Optional[str],
618
+ act_fn: str,
619
+ num_class_embeds: Optional[int],
620
+ projection_class_embeddings_input_dim: Optional[int],
621
+ time_embed_dim: int,
622
+ timestep_input_dim: int,
623
+ ):
624
+ if class_embed_type is None and num_class_embeds is not None:
625
+ self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
626
+ elif class_embed_type == "timestep":
627
+ self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
628
+ elif class_embed_type == "identity":
629
+ self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
630
+ elif class_embed_type == "projection":
631
+ if projection_class_embeddings_input_dim is None:
632
+ raise ValueError(
633
+ "`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
634
+ )
635
+ # The projection `class_embed_type` is the same as the timestep `class_embed_type` except
636
+ # 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
637
+ # 2. it projects from an arbitrary input dimension.
638
+ #
639
+ # Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
640
+ # When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
641
+ # As a result, `TimestepEmbedding` can be passed arbitrary vectors.
642
+ self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
643
+ elif class_embed_type == "simple_projection":
644
+ if projection_class_embeddings_input_dim is None:
645
+ raise ValueError(
646
+ "`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
647
+ )
648
+ self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
649
+ else:
650
+ self.class_embedding = None
651
+
652
+ def _set_add_embedding(
653
+ self,
654
+ addition_embed_type: str,
655
+ addition_embed_type_num_heads: int,
656
+ addition_time_embed_dim: Optional[int],
657
+ flip_sin_to_cos: bool,
658
+ freq_shift: float,
659
+ cross_attention_dim: Optional[int],
660
+ encoder_hid_dim: Optional[int],
661
+ projection_class_embeddings_input_dim: Optional[int],
662
+ time_embed_dim: int,
663
+ ):
664
+ if addition_embed_type == "text":
665
+ if encoder_hid_dim is not None:
666
+ text_time_embedding_from_dim = encoder_hid_dim
667
+ else:
668
+ text_time_embedding_from_dim = cross_attention_dim
669
+
670
+ self.add_embedding = TextTimeEmbedding(
671
+ text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
672
+ )
673
+ elif addition_embed_type == "text_image":
674
+ # text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
675
+ # they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
676
+ # case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
677
+ self.add_embedding = TextImageTimeEmbedding(
678
+ text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
679
+ )
680
+ elif addition_embed_type == "text_time":
681
+ self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
682
+ self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
683
+ elif addition_embed_type == "image":
684
+ # Kandinsky 2.2
685
+ self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
686
+ elif addition_embed_type == "image_hint":
687
+ # Kandinsky 2.2 ControlNet
688
+ self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
689
+ elif addition_embed_type is not None:
690
+ raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
691
+
692
+ def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
693
+ if attention_type in ["gated", "gated-text-image"]:
694
+ positive_len = 768
695
+ if isinstance(cross_attention_dim, int):
696
+ positive_len = cross_attention_dim
697
+ elif isinstance(cross_attention_dim, (list, tuple)):
698
+ positive_len = cross_attention_dim[0]
699
+
700
+ feature_type = "text-only" if attention_type == "gated" else "text-image"
701
+ self.position_net = GLIGENTextBoundingboxProjection(
702
+ positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
703
+ )
704
+
705
+ @property
706
+ def attn_processors(self) -> Dict[str, AttentionProcessor]:
707
+ r"""
708
+ Returns:
709
+ `dict` of attention processors: A dictionary containing all attention processors used in the model with
710
+ indexed by its weight name.
711
+ """
712
+ # set recursively
713
+ processors = {}
714
+
715
+ def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
716
+ if hasattr(module, "get_processor"):
717
+ processors[f"{name}.processor"] = module.get_processor()
718
+
719
+ for sub_name, child in module.named_children():
720
+ fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
721
+
722
+ return processors
723
+
724
+ for name, module in self.named_children():
725
+ fn_recursive_add_processors(name, module, processors)
726
+
727
+ return processors
728
+
729
+ def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
730
+ r"""
731
+ Sets the attention processor to use to compute attention.
732
+
733
+ Parameters:
734
+ processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
735
+ The instantiated processor class or a dictionary of processor classes that will be set as the processor
736
+ for **all** `Attention` layers.
737
+
738
+ If `processor` is a dict, the key needs to define the path to the corresponding cross attention
739
+ processor. This is strongly recommended when setting trainable attention processors.
740
+
741
+ """
742
+ count = len(self.attn_processors.keys())
743
+
744
+ if isinstance(processor, dict) and len(processor) != count:
745
+ raise ValueError(
746
+ f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
747
+ f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
748
+ )
749
+
750
+ def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
751
+ if hasattr(module, "set_processor"):
752
+ if not isinstance(processor, dict):
753
+ module.set_processor(processor)
754
+ else:
755
+ module.set_processor(processor.pop(f"{name}.processor"))
756
+
757
+ for sub_name, child in module.named_children():
758
+ fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
759
+
760
+ for name, module in self.named_children():
761
+ fn_recursive_attn_processor(name, module, processor)
762
+
763
+ def set_default_attn_processor(self):
764
+ """
765
+ Disables custom attention processors and sets the default attention implementation.
766
+ """
767
+ if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
768
+ processor = AttnAddedKVProcessor()
769
+ elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
770
+ processor = AttnProcessor()
771
+ else:
772
+ raise ValueError(
773
+ f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
774
+ )
775
+
776
+ self.set_attn_processor(processor)
777
+
778
+ def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
779
+ r"""
780
+ Enable sliced attention computation.
781
+
782
+ When this option is enabled, the attention module splits the input tensor in slices to compute attention in
783
+ several steps. This is useful for saving some memory in exchange for a small decrease in speed.
784
+
785
+ Args:
786
+ slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
787
+ When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
788
+ `"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
789
+ provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
790
+ must be a multiple of `slice_size`.
791
+ """
792
+ sliceable_head_dims = []
793
+
794
+ def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
795
+ if hasattr(module, "set_attention_slice"):
796
+ sliceable_head_dims.append(module.sliceable_head_dim)
797
+
798
+ for child in module.children():
799
+ fn_recursive_retrieve_sliceable_dims(child)
800
+
801
+ # retrieve number of attention layers
802
+ for module in self.children():
803
+ fn_recursive_retrieve_sliceable_dims(module)
804
+
805
+ num_sliceable_layers = len(sliceable_head_dims)
806
+
807
+ if slice_size == "auto":
808
+ # half the attention head size is usually a good trade-off between
809
+ # speed and memory
810
+ slice_size = [dim // 2 for dim in sliceable_head_dims]
811
+ elif slice_size == "max":
812
+ # make smallest slice possible
813
+ slice_size = num_sliceable_layers * [1]
814
+
815
+ slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
816
+
817
+ if len(slice_size) != len(sliceable_head_dims):
818
+ raise ValueError(
819
+ f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
820
+ f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
821
+ )
822
+
823
+ for i in range(len(slice_size)):
824
+ size = slice_size[i]
825
+ dim = sliceable_head_dims[i]
826
+ if size is not None and size > dim:
827
+ raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
828
+
829
+ # Recursively walk through all the children.
830
+ # Any children which exposes the set_attention_slice method
831
+ # gets the message
832
+ def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
833
+ if hasattr(module, "set_attention_slice"):
834
+ module.set_attention_slice(slice_size.pop())
835
+
836
+ for child in module.children():
837
+ fn_recursive_set_attention_slice(child, slice_size)
838
+
839
+ reversed_slice_size = list(reversed(slice_size))
840
+ for module in self.children():
841
+ fn_recursive_set_attention_slice(module, reversed_slice_size)
842
+
843
+ def _set_gradient_checkpointing(self, module, value=False):
844
+ if hasattr(module, "gradient_checkpointing"):
845
+ module.gradient_checkpointing = value
846
+
847
+ def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
848
+ r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
849
+
850
+ The suffixes after the scaling factors represent the stage blocks where they are being applied.
851
+
852
+ Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
853
+ are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
854
+
855
+ Args:
856
+ s1 (`float`):
857
+ Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
858
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
859
+ s2 (`float`):
860
+ Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
861
+ mitigate the "oversmoothing effect" in the enhanced denoising process.
862
+ b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
863
+ b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
864
+ """
865
+ for i, upsample_block in enumerate(self.up_blocks):
866
+ setattr(upsample_block, "s1", s1)
867
+ setattr(upsample_block, "s2", s2)
868
+ setattr(upsample_block, "b1", b1)
869
+ setattr(upsample_block, "b2", b2)
870
+
871
+ def disable_freeu(self):
872
+ """Disables the FreeU mechanism."""
873
+ freeu_keys = {"s1", "s2", "b1", "b2"}
874
+ for i, upsample_block in enumerate(self.up_blocks):
875
+ for k in freeu_keys:
876
+ if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
877
+ setattr(upsample_block, k, None)
878
+
879
+ def fuse_qkv_projections(self):
880
+ """
881
+ Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
882
+ are fused. For cross-attention modules, key and value projection matrices are fused.
883
+
884
+ <Tip warning={true}>
885
+
886
+ This API is 🧪 experimental.
887
+
888
+ </Tip>
889
+ """
890
+ self.original_attn_processors = None
891
+
892
+ for _, attn_processor in self.attn_processors.items():
893
+ if "Added" in str(attn_processor.__class__.__name__):
894
+ raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
895
+
896
+ self.original_attn_processors = self.attn_processors
897
+
898
+ for module in self.modules():
899
+ if isinstance(module, Attention):
900
+ module.fuse_projections(fuse=True)
901
+
902
+ def unfuse_qkv_projections(self):
903
+ """Disables the fused QKV projection if enabled.
904
+
905
+ <Tip warning={true}>
906
+
907
+ This API is 🧪 experimental.
908
+
909
+ </Tip>
910
+
911
+ """
912
+ if self.original_attn_processors is not None:
913
+ self.set_attn_processor(self.original_attn_processors)
914
+
915
+ def get_time_embed(
916
+ self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
917
+ ) -> Optional[torch.Tensor]:
918
+ timesteps = timestep
919
+ if not torch.is_tensor(timesteps):
920
+ # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
921
+ # This would be a good case for the `match` statement (Python 3.10+)
922
+ is_mps = sample.device.type == "mps"
923
+ if isinstance(timestep, float):
924
+ dtype = torch.float32 if is_mps else torch.float64
925
+ else:
926
+ dtype = torch.int32 if is_mps else torch.int64
927
+ timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
928
+ elif len(timesteps.shape) == 0:
929
+ timesteps = timesteps[None].to(sample.device)
930
+
931
+ # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
932
+ timesteps = timesteps.expand(sample.shape[0])
933
+
934
+ t_emb = self.time_proj(timesteps)
935
+ # `Timesteps` does not contain any weights and will always return f32 tensors
936
+ # but time_embedding might actually be running in fp16. so we need to cast here.
937
+ # there might be better ways to encapsulate this.
938
+ t_emb = t_emb.to(dtype=sample.dtype)
939
+ return t_emb
940
+
941
+ def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
942
+ class_emb = None
943
+ if self.class_embedding is not None:
944
+ if class_labels is None:
945
+ raise ValueError("class_labels should be provided when num_class_embeds > 0")
946
+
947
+ if self.config.class_embed_type == "timestep":
948
+ class_labels = self.time_proj(class_labels)
949
+
950
+ # `Timesteps` does not contain any weights and will always return f32 tensors
951
+ # there might be better ways to encapsulate this.
952
+ class_labels = class_labels.to(dtype=sample.dtype)
953
+
954
+ class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
955
+ return class_emb
956
+
957
+ def get_aug_embed(
958
+ self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
959
+ ) -> Optional[torch.Tensor]:
960
+ aug_emb = None
961
+ if self.config.addition_embed_type == "text":
962
+ aug_emb = self.add_embedding(encoder_hidden_states)
963
+ elif self.config.addition_embed_type == "text_image":
964
+ # Kandinsky 2.1 - style
965
+ if "image_embeds" not in added_cond_kwargs:
966
+ raise ValueError(
967
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
968
+ )
969
+
970
+ image_embs = added_cond_kwargs.get("image_embeds")
971
+ text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
972
+ aug_emb = self.add_embedding(text_embs, image_embs)
973
+ elif self.config.addition_embed_type == "text_time":
974
+ # SDXL - style
975
+ if "text_embeds" not in added_cond_kwargs:
976
+ raise ValueError(
977
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
978
+ )
979
+ text_embeds = added_cond_kwargs.get("text_embeds")
980
+ if "time_ids" not in added_cond_kwargs:
981
+ raise ValueError(
982
+ f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
983
+ )
984
+ time_ids = added_cond_kwargs.get("time_ids")
985
+ time_embeds = self.add_time_proj(time_ids.flatten())
986
+ time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
987
+ add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
988
+ add_embeds = add_embeds.to(emb.dtype)
989
+ aug_emb = self.add_embedding(add_embeds)
990
+ elif self.config.addition_embed_type == "image":
991
+ # Kandinsky 2.2 - style
992
+ if "image_embeds" not in added_cond_kwargs:
993
+ raise ValueError(
994
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
995
+ )
996
+ image_embs = added_cond_kwargs.get("image_embeds")
997
+ aug_emb = self.add_embedding(image_embs)
998
+ elif self.config.addition_embed_type == "image_hint":
999
+ # Kandinsky 2.2 - style
1000
+ if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
1001
+ raise ValueError(
1002
+ f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
1003
+ )
1004
+ image_embs = added_cond_kwargs.get("image_embeds")
1005
+ hint = added_cond_kwargs.get("hint")
1006
+ aug_emb = self.add_embedding(image_embs, hint)
1007
+ return aug_emb
1008
+
1009
+ def process_encoder_hidden_states(
1010
+ self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
1011
+ ) -> torch.Tensor:
1012
+ if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
1013
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
1014
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
1015
+ # Kandinsky 2.1 - style
1016
+ if "image_embeds" not in added_cond_kwargs:
1017
+ raise ValueError(
1018
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1019
+ )
1020
+
1021
+ image_embeds = added_cond_kwargs.get("image_embeds")
1022
+ encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
1023
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
1024
+ # Kandinsky 2.2 - style
1025
+ if "image_embeds" not in added_cond_kwargs:
1026
+ raise ValueError(
1027
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1028
+ )
1029
+ image_embeds = added_cond_kwargs.get("image_embeds")
1030
+ encoder_hidden_states = self.encoder_hid_proj(image_embeds)
1031
+ elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
1032
+ if "image_embeds" not in added_cond_kwargs:
1033
+ raise ValueError(
1034
+ f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
1035
+ )
1036
+
1037
+ if hasattr(self, 'text_encoder_hid_proj') and not self.text_encoder_hid_proj is None:
1038
+ encoder_hidden_states = self.text_encoder_hid_proj( encoder_hidden_states )
1039
+
1040
+ image_embeds = added_cond_kwargs.get("image_embeds")
1041
+ image_embeds = self.encoder_hid_proj(image_embeds)
1042
+ encoder_hidden_states = (encoder_hidden_states, image_embeds)
1043
+ return encoder_hidden_states
1044
+
1045
+ def forward(
1046
+ self,
1047
+ sample: torch.Tensor,
1048
+ timestep: Union[torch.Tensor, float, int],
1049
+ encoder_hidden_states: torch.Tensor,
1050
+ class_labels: Optional[torch.Tensor] = None,
1051
+ timestep_cond: Optional[torch.Tensor] = None,
1052
+ attention_mask: Optional[torch.Tensor] = None,
1053
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1054
+ added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
1055
+ down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
1056
+ mid_block_additional_residual: Optional[torch.Tensor] = None,
1057
+ down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
1058
+ encoder_attention_mask: Optional[torch.Tensor] = None,
1059
+ return_dict: bool = True,
1060
+ ) -> Union[UNet2DConditionOutput, Tuple]:
1061
+ r"""
1062
+ The [`UNet2DConditionModel`] forward method.
1063
+
1064
+ Args:
1065
+ sample (`torch.Tensor`):
1066
+ The noisy input tensor with the following shape `(batch, channel, height, width)`.
1067
+ timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
1068
+ encoder_hidden_states (`torch.Tensor`):
1069
+ The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
1070
+ class_labels (`torch.Tensor`, *optional*, defaults to `None`):
1071
+ Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
1072
+ timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
1073
+ Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
1074
+ through the `self.time_embedding` layer to obtain the timestep embeddings.
1075
+ attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
1076
+ An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
1077
+ is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
1078
+ negative values to the attention scores corresponding to "discard" tokens.
1079
+ cross_attention_kwargs (`dict`, *optional*):
1080
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
1081
+ `self.processor` in
1082
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1083
+ added_cond_kwargs: (`dict`, *optional*):
1084
+ A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
1085
+ are passed along to the UNet blocks.
1086
+ down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
1087
+ A tuple of tensors that if specified are added to the residuals of down unet blocks.
1088
+ mid_block_additional_residual: (`torch.Tensor`, *optional*):
1089
+ A tensor that if specified is added to the residual of the middle unet block.
1090
+ down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
1091
+ additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
1092
+ encoder_attention_mask (`torch.Tensor`):
1093
+ A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
1094
+ `True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
1095
+ which adds large negative values to the attention scores corresponding to "discard" tokens.
1096
+ return_dict (`bool`, *optional*, defaults to `True`):
1097
+ Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
1098
+ tuple.
1099
+
1100
+ Returns:
1101
+ [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
1102
+ If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
1103
+ otherwise a `tuple` is returned where the first element is the sample tensor.
1104
+ """
1105
+ # By default samples have to be AT least a multiple of the overall upsampling factor.
1106
+ # The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
1107
+ # However, the upsampling interpolation output size can be forced to fit any upsampling size
1108
+ # on the fly if necessary.
1109
+ default_overall_up_factor = 2**self.num_upsamplers
1110
+
1111
+ # upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
1112
+ forward_upsample_size = False
1113
+ upsample_size = None
1114
+
1115
+ for dim in sample.shape[-2:]:
1116
+ if dim % default_overall_up_factor != 0:
1117
+ # Forward upsample size to force interpolation output size.
1118
+ forward_upsample_size = True
1119
+ break
1120
+
1121
+ # ensure attention_mask is a bias, and give it a singleton query_tokens dimension
1122
+ # expects mask of shape:
1123
+ # [batch, key_tokens]
1124
+ # adds singleton query_tokens dimension:
1125
+ # [batch, 1, key_tokens]
1126
+ # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
1127
+ # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
1128
+ # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
1129
+ if attention_mask is not None:
1130
+ # assume that mask is expressed as:
1131
+ # (1 = keep, 0 = discard)
1132
+ # convert mask into a bias that can be added to attention scores:
1133
+ # (keep = +0, discard = -10000.0)
1134
+ attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
1135
+ attention_mask = attention_mask.unsqueeze(1)
1136
+
1137
+ # convert encoder_attention_mask to a bias the same way we do for attention_mask
1138
+ if encoder_attention_mask is not None:
1139
+ encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
1140
+ encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
1141
+
1142
+ # 0. center input if necessary
1143
+ if self.config.center_input_sample:
1144
+ sample = 2 * sample - 1.0
1145
+
1146
+ # 1. time
1147
+ t_emb = self.get_time_embed(sample=sample, timestep=timestep)
1148
+ emb = self.time_embedding(t_emb, timestep_cond)
1149
+ aug_emb = None
1150
+
1151
+ class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
1152
+ if class_emb is not None:
1153
+ if self.config.class_embeddings_concat:
1154
+ emb = torch.cat([emb, class_emb], dim=-1)
1155
+ else:
1156
+ emb = emb + class_emb
1157
+
1158
+ aug_emb = self.get_aug_embed(
1159
+ emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
1160
+ )
1161
+ if self.config.addition_embed_type == "image_hint":
1162
+ aug_emb, hint = aug_emb
1163
+ sample = torch.cat([sample, hint], dim=1)
1164
+
1165
+ emb = emb + aug_emb if aug_emb is not None else emb
1166
+
1167
+ if self.time_embed_act is not None:
1168
+ emb = self.time_embed_act(emb)
1169
+
1170
+ encoder_hidden_states = self.process_encoder_hidden_states(
1171
+ encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
1172
+ )
1173
+
1174
+ # 2. pre-process
1175
+ sample = self.conv_in(sample)
1176
+
1177
+ # 2.5 GLIGEN position net
1178
+ if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
1179
+ cross_attention_kwargs = cross_attention_kwargs.copy()
1180
+ gligen_args = cross_attention_kwargs.pop("gligen")
1181
+ cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
1182
+
1183
+ # 3. down
1184
+ # we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
1185
+ # to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
1186
+ if cross_attention_kwargs is not None:
1187
+ cross_attention_kwargs = cross_attention_kwargs.copy()
1188
+ lora_scale = cross_attention_kwargs.pop("scale", 1.0)
1189
+ else:
1190
+ lora_scale = 1.0
1191
+
1192
+ if USE_PEFT_BACKEND:
1193
+ # weight the lora layers by setting `lora_scale` for each PEFT layer
1194
+ scale_lora_layers(self, lora_scale)
1195
+
1196
+ is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
1197
+ # using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
1198
+ is_adapter = down_intrablock_additional_residuals is not None
1199
+ # maintain backward compatibility for legacy usage, where
1200
+ # T2I-Adapter and ControlNet both use down_block_additional_residuals arg
1201
+ # but can only use one or the other
1202
+ if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
1203
+ deprecate(
1204
+ "T2I should not use down_block_additional_residuals",
1205
+ "1.3.0",
1206
+ "Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
1207
+ and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
1208
+ for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
1209
+ standard_warn=False,
1210
+ )
1211
+ down_intrablock_additional_residuals = down_block_additional_residuals
1212
+ is_adapter = True
1213
+
1214
+ down_block_res_samples = (sample,)
1215
+ for downsample_block in self.down_blocks:
1216
+ if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
1217
+ # For t2i-adapter CrossAttnDownBlock2D
1218
+ additional_residuals = {}
1219
+ if is_adapter and len(down_intrablock_additional_residuals) > 0:
1220
+ additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
1221
+
1222
+ sample, res_samples = downsample_block(
1223
+ hidden_states=sample,
1224
+ temb=emb,
1225
+ encoder_hidden_states=encoder_hidden_states,
1226
+ attention_mask=attention_mask,
1227
+ cross_attention_kwargs=cross_attention_kwargs,
1228
+ encoder_attention_mask=encoder_attention_mask,
1229
+ **additional_residuals,
1230
+ )
1231
+ else:
1232
+ sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
1233
+ if is_adapter and len(down_intrablock_additional_residuals) > 0:
1234
+ sample += down_intrablock_additional_residuals.pop(0)
1235
+
1236
+ down_block_res_samples += res_samples
1237
+
1238
+ if is_controlnet:
1239
+ new_down_block_res_samples = ()
1240
+
1241
+ for down_block_res_sample, down_block_additional_residual in zip(
1242
+ down_block_res_samples, down_block_additional_residuals
1243
+ ):
1244
+ down_block_res_sample = down_block_res_sample + down_block_additional_residual
1245
+ new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
1246
+
1247
+ down_block_res_samples = new_down_block_res_samples
1248
+
1249
+ # 4. mid
1250
+ if self.mid_block is not None:
1251
+ if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
1252
+ sample = self.mid_block(
1253
+ sample,
1254
+ emb,
1255
+ encoder_hidden_states=encoder_hidden_states,
1256
+ attention_mask=attention_mask,
1257
+ cross_attention_kwargs=cross_attention_kwargs,
1258
+ encoder_attention_mask=encoder_attention_mask,
1259
+ )
1260
+ else:
1261
+ sample = self.mid_block(sample, emb)
1262
+
1263
+ # To support T2I-Adapter-XL
1264
+ if (
1265
+ is_adapter
1266
+ and len(down_intrablock_additional_residuals) > 0
1267
+ and sample.shape == down_intrablock_additional_residuals[0].shape
1268
+ ):
1269
+ sample += down_intrablock_additional_residuals.pop(0)
1270
+
1271
+ if is_controlnet:
1272
+ sample = sample + mid_block_additional_residual
1273
+
1274
+ # 5. up
1275
+ for i, upsample_block in enumerate(self.up_blocks):
1276
+ is_final_block = i == len(self.up_blocks) - 1
1277
+
1278
+ res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
1279
+ down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
1280
+
1281
+ # if we have not reached the final block and need to forward the
1282
+ # upsample size, we do it here
1283
+ if not is_final_block and forward_upsample_size:
1284
+ upsample_size = down_block_res_samples[-1].shape[2:]
1285
+
1286
+ if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
1287
+ sample = upsample_block(
1288
+ hidden_states=sample,
1289
+ temb=emb,
1290
+ res_hidden_states_tuple=res_samples,
1291
+ encoder_hidden_states=encoder_hidden_states,
1292
+ cross_attention_kwargs=cross_attention_kwargs,
1293
+ upsample_size=upsample_size,
1294
+ attention_mask=attention_mask,
1295
+ encoder_attention_mask=encoder_attention_mask,
1296
+ )
1297
+ else:
1298
+ sample = upsample_block(
1299
+ hidden_states=sample,
1300
+ temb=emb,
1301
+ res_hidden_states_tuple=res_samples,
1302
+ upsample_size=upsample_size,
1303
+ )
1304
+
1305
+ # 6. post-process
1306
+ if self.conv_norm_out:
1307
+ sample = self.conv_norm_out(sample)
1308
+ sample = self.conv_act(sample)
1309
+ sample = self.conv_out(sample)
1310
+
1311
+ if USE_PEFT_BACKEND:
1312
+ # remove `lora_scale` from each PEFT layer
1313
+ unscale_lora_layers(self, lora_scale)
1314
+
1315
+ if not return_dict:
1316
+ return (sample,)
1317
+
1318
+ return UNet2DConditionOutput(sample=sample)
kolors/pipelines/__init__.py ADDED
File without changes
kolors/pipelines/pipeline_controlnet_xl_kolors_img2img.py ADDED
@@ -0,0 +1,1365 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+
16
+ import inspect
17
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
18
+
19
+ import numpy as np
20
+ import PIL.Image
21
+ import torch
22
+ import torch.nn.functional as F
23
+ from transformers import (
24
+ CLIPImageProcessor,
25
+ CLIPTextModel,
26
+ CLIPTextModelWithProjection,
27
+ CLIPTokenizer,
28
+ CLIPVisionModelWithProjection,
29
+ )
30
+
31
+ from diffusers.utils.import_utils import is_invisible_watermark_available
32
+
33
+ from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
34
+ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
35
+ from diffusers.loaders import (
36
+ FromSingleFileMixin,
37
+ IPAdapterMixin,
38
+ StableDiffusionXLLoraLoaderMixin,
39
+ TextualInversionLoaderMixin,
40
+ )
41
+ from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
42
+ from diffusers.models.attention_processor import (
43
+ AttnProcessor2_0,
44
+ XFormersAttnProcessor,
45
+ )
46
+ from diffusers.models.lora import adjust_lora_scale_text_encoder
47
+ from diffusers.schedulers import KarrasDiffusionSchedulers
48
+ from diffusers.utils import (
49
+ USE_PEFT_BACKEND,
50
+ deprecate,
51
+ logging,
52
+ replace_example_docstring,
53
+ scale_lora_layers,
54
+ unscale_lora_layers,
55
+ )
56
+ from diffusers.utils.torch_utils import is_compiled_module, randn_tensor
57
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
58
+ from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
59
+ from diffusers.pipelines.controlnet import MultiControlNetModel
60
+
61
+ from ..models.controlnet import ControlNetModel
62
+
63
+
64
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
65
+
66
+
67
+
68
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
69
+ def retrieve_latents(
70
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
71
+ ):
72
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
73
+ return encoder_output.latent_dist.sample(generator)
74
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
75
+ return encoder_output.latent_dist.mode()
76
+ elif hasattr(encoder_output, "latents"):
77
+ return encoder_output.latents
78
+ else:
79
+ raise AttributeError("Could not access latents of provided encoder_output")
80
+
81
+
82
+ class StableDiffusionXLControlNetImg2ImgPipeline(
83
+ DiffusionPipeline,
84
+ StableDiffusionMixin,
85
+ TextualInversionLoaderMixin,
86
+ StableDiffusionXLLoraLoaderMixin,
87
+ FromSingleFileMixin,
88
+ IPAdapterMixin,
89
+ ):
90
+ r"""
91
+ Pipeline for image-to-image generation using Stable Diffusion XL with ControlNet guidance.
92
+
93
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
94
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
95
+
96
+ The pipeline also inherits the following loading methods:
97
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
98
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
99
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
100
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
101
+
102
+ Args:
103
+ vae ([`AutoencoderKL`]):
104
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
105
+ text_encoder ([`CLIPTextModel`]):
106
+ Frozen text-encoder. Stable Diffusion uses the text portion of
107
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
108
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
109
+ tokenizer (`CLIPTokenizer`):
110
+ Tokenizer of class
111
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
112
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
113
+ controlnet ([`ControlNetModel`] or `List[ControlNetModel]`):
114
+ Provides additional conditioning to the unet during the denoising process. If you set multiple ControlNets
115
+ as a list, the outputs from each ControlNet are added together to create one combined additional
116
+ conditioning.
117
+ scheduler ([`SchedulerMixin`]):
118
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
119
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
120
+ requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
121
+ Whether the `unet` requires an `aesthetic_score` condition to be passed during inference. Also see the
122
+ config of `stabilityai/stable-diffusion-xl-refiner-1-0`.
123
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
124
+ Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
125
+ `stabilityai/stable-diffusion-xl-base-1-0`.
126
+ add_watermarker (`bool`, *optional*):
127
+ Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
128
+ watermark output images. If not defined, it will default to True if the package is installed, otherwise no
129
+ watermarker will be used.
130
+ feature_extractor ([`~transformers.CLIPImageProcessor`]):
131
+ A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
132
+ """
133
+
134
+ model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
135
+ _optional_components = [
136
+ "tokenizer",
137
+ "text_encoder",
138
+ "feature_extractor",
139
+ "image_encoder",
140
+ ]
141
+ _callback_tensor_inputs = [
142
+ "latents",
143
+ "prompt_embeds",
144
+ "negative_prompt_embeds",
145
+ "add_text_embeds",
146
+ "add_time_ids",
147
+ "negative_pooled_prompt_embeds",
148
+ "add_neg_time_ids",
149
+ ]
150
+
151
+ def __init__(
152
+ self,
153
+ vae: AutoencoderKL,
154
+ text_encoder: CLIPTextModel,
155
+ tokenizer: CLIPTokenizer,
156
+ unet: UNet2DConditionModel,
157
+ controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel],
158
+ scheduler: KarrasDiffusionSchedulers,
159
+ requires_aesthetics_score: bool = False,
160
+ force_zeros_for_empty_prompt: bool = True,
161
+ feature_extractor: CLIPImageProcessor = None,
162
+ image_encoder: CLIPVisionModelWithProjection = None,
163
+ ):
164
+ super().__init__()
165
+
166
+ if isinstance(controlnet, (list, tuple)):
167
+ controlnet = MultiControlNetModel(controlnet)
168
+
169
+ self.register_modules(
170
+ vae=vae,
171
+ text_encoder=text_encoder,
172
+ tokenizer=tokenizer,
173
+ unet=unet,
174
+ controlnet=controlnet,
175
+ scheduler=scheduler,
176
+ feature_extractor=feature_extractor,
177
+ image_encoder=image_encoder,
178
+ )
179
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
180
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True)
181
+ self.control_image_processor = VaeImageProcessor(
182
+ vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
183
+ )
184
+
185
+ self.watermark = None
186
+
187
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
188
+ self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
189
+
190
+
191
+ def encode_prompt(
192
+ self,
193
+ prompt,
194
+ device: Optional[torch.device] = None,
195
+ num_images_per_prompt: int = 1,
196
+ do_classifier_free_guidance: bool = True,
197
+ negative_prompt=None,
198
+ prompt_embeds: Optional[torch.FloatTensor] = None,
199
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
200
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
201
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
202
+ lora_scale: Optional[float] = None,
203
+ ):
204
+ r"""
205
+ Encodes the prompt into text encoder hidden states.
206
+
207
+ Args:
208
+ prompt (`str` or `List[str]`, *optional*):
209
+ prompt to be encoded
210
+ device: (`torch.device`):
211
+ torch device
212
+ num_images_per_prompt (`int`):
213
+ number of images that should be generated per prompt
214
+ do_classifier_free_guidance (`bool`):
215
+ whether to use classifier free guidance or not
216
+ negative_prompt (`str` or `List[str]`, *optional*):
217
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
218
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
219
+ less than `1`).
220
+ prompt_embeds (`torch.FloatTensor`, *optional*):
221
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
222
+ provided, text embeddings will be generated from `prompt` input argument.
223
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
224
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
225
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
226
+ argument.
227
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
228
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
229
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
230
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
231
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
232
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
233
+ input argument.
234
+ lora_scale (`float`, *optional*):
235
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
236
+ """
237
+ # from IPython import embed; embed(); exit()
238
+ device = device or self._execution_device
239
+
240
+ # set lora scale so that monkey patched LoRA
241
+ # function of text encoder can correctly access it
242
+ if lora_scale is not None and isinstance(self, LoraLoaderMixin):
243
+ self._lora_scale = lora_scale
244
+
245
+ if prompt is not None and isinstance(prompt, str):
246
+ batch_size = 1
247
+ elif prompt is not None and isinstance(prompt, list):
248
+ batch_size = len(prompt)
249
+ else:
250
+ batch_size = prompt_embeds.shape[0]
251
+
252
+ # Define tokenizers and text encoders
253
+ tokenizers = [self.tokenizer]
254
+ text_encoders = [self.text_encoder]
255
+
256
+ if prompt_embeds is None:
257
+ # textual inversion: procecss multi-vector tokens if necessary
258
+ prompt_embeds_list = []
259
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
260
+ if isinstance(self, TextualInversionLoaderMixin):
261
+ prompt = self.maybe_convert_prompt(prompt, tokenizer)
262
+
263
+ text_inputs = tokenizer(
264
+ prompt,
265
+ padding="max_length",
266
+ max_length=256,
267
+ truncation=True,
268
+ return_tensors="pt",
269
+ ).to('cuda')
270
+ output = text_encoder(
271
+ input_ids=text_inputs['input_ids'] ,
272
+ attention_mask=text_inputs['attention_mask'],
273
+ position_ids=text_inputs['position_ids'],
274
+ output_hidden_states=True)
275
+ prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
276
+ pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
277
+ bs_embed, seq_len, _ = prompt_embeds.shape
278
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
279
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
280
+
281
+ prompt_embeds_list.append(prompt_embeds)
282
+
283
+ # prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
284
+ prompt_embeds = prompt_embeds_list[0]
285
+
286
+ # get unconditional embeddings for classifier free guidance
287
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
288
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
289
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
290
+ negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
291
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
292
+ # negative_prompt = negative_prompt or ""
293
+ uncond_tokens: List[str]
294
+ if negative_prompt is None:
295
+ uncond_tokens = [""] * batch_size
296
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
297
+ raise TypeError(
298
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
299
+ f" {type(prompt)}."
300
+ )
301
+ elif isinstance(negative_prompt, str):
302
+ uncond_tokens = [negative_prompt]
303
+ elif batch_size != len(negative_prompt):
304
+ raise ValueError(
305
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
306
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
307
+ " the batch size of `prompt`."
308
+ )
309
+ else:
310
+ uncond_tokens = negative_prompt
311
+
312
+ negative_prompt_embeds_list = []
313
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
314
+ # textual inversion: procecss multi-vector tokens if necessary
315
+ if isinstance(self, TextualInversionLoaderMixin):
316
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)
317
+
318
+ max_length = prompt_embeds.shape[1]
319
+ uncond_input = tokenizer(
320
+ uncond_tokens,
321
+ padding="max_length",
322
+ max_length=max_length,
323
+ truncation=True,
324
+ return_tensors="pt",
325
+ ).to('cuda')
326
+ output = text_encoder(
327
+ input_ids=uncond_input['input_ids'] ,
328
+ attention_mask=uncond_input['attention_mask'],
329
+ position_ids=uncond_input['position_ids'],
330
+ output_hidden_states=True)
331
+ negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
332
+ negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
333
+
334
+ if do_classifier_free_guidance:
335
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
336
+ seq_len = negative_prompt_embeds.shape[1]
337
+
338
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
339
+
340
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
341
+ negative_prompt_embeds = negative_prompt_embeds.view(
342
+ batch_size * num_images_per_prompt, seq_len, -1
343
+ )
344
+
345
+ # For classifier free guidance, we need to do two forward passes.
346
+ # Here we concatenate the unconditional and text embeddings into a single batch
347
+ # to avoid doing two forward passes
348
+
349
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
350
+
351
+ # negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
352
+ negative_prompt_embeds = negative_prompt_embeds_list[0]
353
+
354
+ bs_embed = pooled_prompt_embeds.shape[0]
355
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
356
+ bs_embed * num_images_per_prompt, -1
357
+ )
358
+ if do_classifier_free_guidance:
359
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
360
+ bs_embed * num_images_per_prompt, -1
361
+ )
362
+
363
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
364
+
365
+
366
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
367
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
368
+ dtype = next(self.image_encoder.parameters()).dtype
369
+
370
+ if not isinstance(image, torch.Tensor):
371
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
372
+
373
+ image = image.to(device=device, dtype=dtype)
374
+ if output_hidden_states:
375
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
376
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
377
+ uncond_image_enc_hidden_states = self.image_encoder(
378
+ torch.zeros_like(image), output_hidden_states=True
379
+ ).hidden_states[-2]
380
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
381
+ num_images_per_prompt, dim=0
382
+ )
383
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
384
+ else:
385
+ image_embeds = self.image_encoder(image).image_embeds
386
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
387
+ uncond_image_embeds = torch.zeros_like(image_embeds)
388
+
389
+ return image_embeds, uncond_image_embeds
390
+
391
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
392
+ def prepare_ip_adapter_image_embeds(
393
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
394
+ ):
395
+ image_embeds = []
396
+ if do_classifier_free_guidance:
397
+ negative_image_embeds = []
398
+ if ip_adapter_image_embeds is None:
399
+ if not isinstance(ip_adapter_image, list):
400
+ ip_adapter_image = [ip_adapter_image]
401
+
402
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
403
+ raise ValueError(
404
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
405
+ )
406
+
407
+ for single_ip_adapter_image, image_proj_layer in zip(
408
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
409
+ ):
410
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
411
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
412
+ single_ip_adapter_image, device, 1, output_hidden_state
413
+ )
414
+
415
+ image_embeds.append(single_image_embeds[None, :])
416
+ if do_classifier_free_guidance:
417
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
418
+ else:
419
+ for single_image_embeds in ip_adapter_image_embeds:
420
+ if do_classifier_free_guidance:
421
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
422
+ negative_image_embeds.append(single_negative_image_embeds)
423
+ image_embeds.append(single_image_embeds)
424
+
425
+ ip_adapter_image_embeds = []
426
+ for i, single_image_embeds in enumerate(image_embeds):
427
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
428
+ if do_classifier_free_guidance:
429
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
430
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
431
+
432
+ single_image_embeds = single_image_embeds.to(device=device)
433
+ ip_adapter_image_embeds.append(single_image_embeds)
434
+
435
+ return ip_adapter_image_embeds
436
+
437
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
438
+ def prepare_extra_step_kwargs(self, generator, eta):
439
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
440
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
441
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
442
+ # and should be between [0, 1]
443
+
444
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
445
+ extra_step_kwargs = {}
446
+ if accepts_eta:
447
+ extra_step_kwargs["eta"] = eta
448
+
449
+ # check if the scheduler accepts generator
450
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
451
+ if accepts_generator:
452
+ extra_step_kwargs["generator"] = generator
453
+ return extra_step_kwargs
454
+
455
+ def check_inputs(
456
+ self,
457
+ prompt,
458
+ image,
459
+ strength,
460
+ num_inference_steps,
461
+ callback_steps,
462
+ negative_prompt=None,
463
+ prompt_embeds=None,
464
+ negative_prompt_embeds=None,
465
+ pooled_prompt_embeds=None,
466
+ negative_pooled_prompt_embeds=None,
467
+ ip_adapter_image=None,
468
+ ip_adapter_image_embeds=None,
469
+ controlnet_conditioning_scale=1.0,
470
+ control_guidance_start=0.0,
471
+ control_guidance_end=1.0,
472
+ callback_on_step_end_tensor_inputs=None,
473
+ ):
474
+ if strength < 0 or strength > 1:
475
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
476
+ if num_inference_steps is None:
477
+ raise ValueError("`num_inference_steps` cannot be None.")
478
+ elif not isinstance(num_inference_steps, int) or num_inference_steps <= 0:
479
+ raise ValueError(
480
+ f"`num_inference_steps` has to be a positive integer but is {num_inference_steps} of type"
481
+ f" {type(num_inference_steps)}."
482
+ )
483
+
484
+ if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
485
+ raise ValueError(
486
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
487
+ f" {type(callback_steps)}."
488
+ )
489
+
490
+ if callback_on_step_end_tensor_inputs is not None and not all(
491
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
492
+ ):
493
+ raise ValueError(
494
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
495
+ )
496
+
497
+ if prompt is not None and prompt_embeds is not None:
498
+ raise ValueError(
499
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
500
+ " only forward one of the two."
501
+ )
502
+ elif prompt is None and prompt_embeds is None:
503
+ raise ValueError(
504
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
505
+ )
506
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
507
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
508
+
509
+ if negative_prompt is not None and negative_prompt_embeds is not None:
510
+ raise ValueError(
511
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
512
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
513
+ )
514
+
515
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
516
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
517
+ raise ValueError(
518
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
519
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
520
+ f" {negative_prompt_embeds.shape}."
521
+ )
522
+
523
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
524
+ raise ValueError(
525
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
526
+ )
527
+
528
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
529
+ raise ValueError(
530
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
531
+ )
532
+
533
+ # `prompt` needs more sophisticated handling when there are multiple
534
+ # conditionings.
535
+ if isinstance(self.controlnet, MultiControlNetModel):
536
+ if isinstance(prompt, list):
537
+ logger.warning(
538
+ f"You have {len(self.controlnet.nets)} ControlNets and you have passed {len(prompt)}"
539
+ " prompts. The conditionings will be fixed across the prompts."
540
+ )
541
+
542
+ # Check `image`
543
+ is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance(
544
+ self.controlnet, torch._dynamo.eval_frame.OptimizedModule
545
+ )
546
+ if (
547
+ isinstance(self.controlnet, ControlNetModel)
548
+ or is_compiled
549
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
550
+ ):
551
+ self.check_image(image, prompt, prompt_embeds)
552
+ elif (
553
+ isinstance(self.controlnet, MultiControlNetModel)
554
+ or is_compiled
555
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
556
+ ):
557
+ if not isinstance(image, list):
558
+ raise TypeError("For multiple controlnets: `image` must be type `list`")
559
+
560
+ # When `image` is a nested list:
561
+ # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]])
562
+ elif any(isinstance(i, list) for i in image):
563
+ raise ValueError("A single batch of multiple conditionings are supported at the moment.")
564
+ elif len(image) != len(self.controlnet.nets):
565
+ raise ValueError(
566
+ f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(image)} images and {len(self.controlnet.nets)} ControlNets."
567
+ )
568
+
569
+ for image_ in image:
570
+ self.check_image(image_, prompt, prompt_embeds)
571
+ else:
572
+ assert False
573
+
574
+ # Check `controlnet_conditioning_scale`
575
+ if (
576
+ isinstance(self.controlnet, ControlNetModel)
577
+ or is_compiled
578
+ and isinstance(self.controlnet._orig_mod, ControlNetModel)
579
+ ):
580
+ if not isinstance(controlnet_conditioning_scale, float):
581
+ raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.")
582
+ elif (
583
+ isinstance(self.controlnet, MultiControlNetModel)
584
+ or is_compiled
585
+ and isinstance(self.controlnet._orig_mod, MultiControlNetModel)
586
+ ):
587
+ if isinstance(controlnet_conditioning_scale, list):
588
+ if any(isinstance(i, list) for i in controlnet_conditioning_scale):
589
+ raise ValueError("A single batch of multiple conditionings are supported at the moment.")
590
+ elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len(
591
+ self.controlnet.nets
592
+ ):
593
+ raise ValueError(
594
+ "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have"
595
+ " the same length as the number of controlnets"
596
+ )
597
+ else:
598
+ assert False
599
+
600
+ if not isinstance(control_guidance_start, (tuple, list)):
601
+ control_guidance_start = [control_guidance_start]
602
+
603
+ if not isinstance(control_guidance_end, (tuple, list)):
604
+ control_guidance_end = [control_guidance_end]
605
+
606
+ if len(control_guidance_start) != len(control_guidance_end):
607
+ raise ValueError(
608
+ f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list."
609
+ )
610
+
611
+ if isinstance(self.controlnet, MultiControlNetModel):
612
+ if len(control_guidance_start) != len(self.controlnet.nets):
613
+ raise ValueError(
614
+ f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}."
615
+ )
616
+
617
+ for start, end in zip(control_guidance_start, control_guidance_end):
618
+ if start >= end:
619
+ raise ValueError(
620
+ f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}."
621
+ )
622
+ if start < 0.0:
623
+ raise ValueError(f"control guidance start: {start} can't be smaller than 0.")
624
+ if end > 1.0:
625
+ raise ValueError(f"control guidance end: {end} can't be larger than 1.0.")
626
+
627
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
628
+ raise ValueError(
629
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
630
+ )
631
+
632
+ if ip_adapter_image_embeds is not None:
633
+ if not isinstance(ip_adapter_image_embeds, list):
634
+ raise ValueError(
635
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
636
+ )
637
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
638
+ raise ValueError(
639
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
640
+ )
641
+
642
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.check_image
643
+ def check_image(self, image, prompt, prompt_embeds):
644
+ image_is_pil = isinstance(image, PIL.Image.Image)
645
+ image_is_tensor = isinstance(image, torch.Tensor)
646
+ image_is_np = isinstance(image, np.ndarray)
647
+ image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image)
648
+ image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor)
649
+ image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray)
650
+
651
+ if (
652
+ not image_is_pil
653
+ and not image_is_tensor
654
+ and not image_is_np
655
+ and not image_is_pil_list
656
+ and not image_is_tensor_list
657
+ and not image_is_np_list
658
+ ):
659
+ raise TypeError(
660
+ f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}"
661
+ )
662
+
663
+ if image_is_pil:
664
+ image_batch_size = 1
665
+ else:
666
+ image_batch_size = len(image)
667
+
668
+ if prompt is not None and isinstance(prompt, str):
669
+ prompt_batch_size = 1
670
+ elif prompt is not None and isinstance(prompt, list):
671
+ prompt_batch_size = len(prompt)
672
+ elif prompt_embeds is not None:
673
+ prompt_batch_size = prompt_embeds.shape[0]
674
+
675
+ if image_batch_size != 1 and image_batch_size != prompt_batch_size:
676
+ raise ValueError(
677
+ f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}"
678
+ )
679
+
680
+ # Copied from diffusers.pipelines.controlnet.pipeline_controlnet_sd_xl.StableDiffusionXLControlNetPipeline.prepare_image
681
+ def prepare_control_image(
682
+ self,
683
+ image,
684
+ width,
685
+ height,
686
+ batch_size,
687
+ num_images_per_prompt,
688
+ device,
689
+ dtype,
690
+ do_classifier_free_guidance=False,
691
+ guess_mode=False,
692
+ ):
693
+ image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
694
+ image_batch_size = image.shape[0]
695
+
696
+ if image_batch_size == 1:
697
+ repeat_by = batch_size
698
+ else:
699
+ # image batch size is the same as prompt batch size
700
+ repeat_by = num_images_per_prompt
701
+
702
+ image = image.repeat_interleave(repeat_by, dim=0)
703
+
704
+ image = image.to(device=device, dtype=dtype)
705
+
706
+ if do_classifier_free_guidance and not guess_mode:
707
+ image = torch.cat([image] * 2)
708
+
709
+ return image
710
+
711
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.StableDiffusionImg2ImgPipeline.get_timesteps
712
+ def get_timesteps(self, num_inference_steps, strength, device):
713
+ # get the original timestep using init_timestep
714
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
715
+
716
+ t_start = max(num_inference_steps - init_timestep, 0)
717
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
718
+ if hasattr(self.scheduler, "set_begin_index"):
719
+ self.scheduler.set_begin_index(t_start * self.scheduler.order)
720
+
721
+ return timesteps, num_inference_steps - t_start
722
+
723
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.prepare_latents
724
+ def prepare_latents(
725
+ self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None, add_noise=True
726
+ ):
727
+ if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
728
+ raise ValueError(
729
+ f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
730
+ )
731
+
732
+ # Offload text encoder if `enable_model_cpu_offload` was enabled
733
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
734
+ torch.cuda.empty_cache()
735
+
736
+ image = image.to(device=device, dtype=dtype)
737
+
738
+ batch_size = batch_size * num_images_per_prompt
739
+
740
+ if image.shape[1] == 4:
741
+ init_latents = image
742
+
743
+ else:
744
+ # make sure the VAE is in float32 mode, as it overflows in float16
745
+ if self.vae.config.force_upcast:
746
+ image = image.float()
747
+ self.vae.to(dtype=torch.float32)
748
+
749
+ if isinstance(generator, list) and len(generator) != batch_size:
750
+ raise ValueError(
751
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
752
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
753
+ )
754
+
755
+ elif isinstance(generator, list):
756
+ init_latents = [
757
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
758
+ for i in range(batch_size)
759
+ ]
760
+ init_latents = torch.cat(init_latents, dim=0)
761
+ else:
762
+ init_latents = retrieve_latents(self.vae.encode(image), generator=generator)
763
+
764
+ if self.vae.config.force_upcast:
765
+ self.vae.to(dtype)
766
+
767
+ init_latents = init_latents.to(dtype)
768
+
769
+ init_latents = self.vae.config.scaling_factor * init_latents
770
+
771
+ if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
772
+ # expand init_latents for batch_size
773
+ additional_image_per_prompt = batch_size // init_latents.shape[0]
774
+ init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
775
+ elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
776
+ raise ValueError(
777
+ f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
778
+ )
779
+ else:
780
+ init_latents = torch.cat([init_latents], dim=0)
781
+
782
+ if add_noise:
783
+ shape = init_latents.shape
784
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
785
+ # get latents
786
+ init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
787
+
788
+ latents = init_latents
789
+
790
+ return latents
791
+
792
+
793
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
794
+ def prepare_latents_t2i(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
795
+ shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
796
+ if isinstance(generator, list) and len(generator) != batch_size:
797
+ raise ValueError(
798
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
799
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
800
+ )
801
+
802
+ if latents is None:
803
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
804
+ else:
805
+ latents = latents.to(device)
806
+
807
+ # scale the initial noise by the standard deviation required by the scheduler
808
+ latents = latents * self.scheduler.init_noise_sigma
809
+ return latents
810
+
811
+
812
+
813
+ def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
814
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
815
+
816
+ passed_add_embed_dim = (
817
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + 4096
818
+ )
819
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
820
+
821
+ if expected_add_embed_dim != passed_add_embed_dim:
822
+ raise ValueError(
823
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
824
+ )
825
+
826
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
827
+ return add_time_ids
828
+
829
+
830
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
831
+ def upcast_vae(self):
832
+ dtype = self.vae.dtype
833
+ self.vae.to(dtype=torch.float32)
834
+ use_torch_2_0_or_xformers = isinstance(
835
+ self.vae.decoder.mid_block.attentions[0].processor,
836
+ (
837
+ AttnProcessor2_0,
838
+ XFormersAttnProcessor,
839
+ ),
840
+ )
841
+ # if xformers or torch_2_0 is used attention block does not need
842
+ # to be in float32 which can save lots of memory
843
+ if use_torch_2_0_or_xformers:
844
+ self.vae.post_quant_conv.to(dtype)
845
+ self.vae.decoder.conv_in.to(dtype)
846
+ self.vae.decoder.mid_block.to(dtype)
847
+
848
+ @property
849
+ def guidance_scale(self):
850
+ return self._guidance_scale
851
+
852
+ @property
853
+ def clip_skip(self):
854
+ return self._clip_skip
855
+
856
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
857
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
858
+ # corresponds to doing no classifier free guidance.
859
+ @property
860
+ def do_classifier_free_guidance(self):
861
+ return self._guidance_scale > 1
862
+
863
+ @property
864
+ def cross_attention_kwargs(self):
865
+ return self._cross_attention_kwargs
866
+
867
+ @property
868
+ def num_timesteps(self):
869
+ return self._num_timesteps
870
+
871
+ @torch.no_grad()
872
+ def __call__(
873
+ self,
874
+ prompt: Union[str, List[str]] = None,
875
+ image: PipelineImageInput = None,
876
+ control_image: PipelineImageInput = None,
877
+ height: Optional[int] = None,
878
+ width: Optional[int] = None,
879
+ strength: float = 0.8,
880
+ num_inference_steps: int = 50,
881
+ guidance_scale: float = 5.0,
882
+ negative_prompt: Optional[Union[str, List[str]]] = None,
883
+ num_images_per_prompt: Optional[int] = 1,
884
+ eta: float = 0.0,
885
+ guess_mode: bool = False,
886
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
887
+ latents: Optional[torch.Tensor] = None,
888
+ prompt_embeds: Optional[torch.Tensor] = None,
889
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
890
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
891
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
892
+ ip_adapter_image: Optional[PipelineImageInput] = None,
893
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
894
+ output_type: Optional[str] = "pil",
895
+ return_dict: bool = True,
896
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
897
+ controlnet_conditioning_scale: Union[float, List[float]] = 0.8,
898
+ control_guidance_start: Union[float, List[float]] = 0.0,
899
+ control_guidance_end: Union[float, List[float]] = 1.0,
900
+ original_size: Tuple[int, int] = None,
901
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
902
+ target_size: Tuple[int, int] = None,
903
+ clip_skip: Optional[int] = None,
904
+ callback_on_step_end: Optional[
905
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
906
+ ] = None,
907
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
908
+ **kwargs,
909
+ ):
910
+ r"""
911
+ Function invoked when calling the pipeline for generation.
912
+
913
+ Args:
914
+ prompt (`str` or `List[str]`, *optional*):
915
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
916
+ instead.
917
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
918
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
919
+ The initial image will be used as the starting point for the image generation process. Can also accept
920
+ image latents as `image`, if passing latents directly, it will not be encoded again.
921
+ control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
922
+ `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
923
+ The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
924
+ the type is specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also
925
+ be accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height
926
+ and/or width are passed, `image` is resized according to them. If multiple ControlNets are specified in
927
+ init, images must be passed as a list such that each element of the list can be correctly batched for
928
+ input to a single controlnet.
929
+ height (`int`, *optional*, defaults to the size of control_image):
930
+ The height in pixels of the generated image. Anything below 512 pixels won't work well for
931
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
932
+ and checkpoints that are not specifically fine-tuned on low resolutions.
933
+ width (`int`, *optional*, defaults to the size of control_image):
934
+ The width in pixels of the generated image. Anything below 512 pixels won't work well for
935
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
936
+ and checkpoints that are not specifically fine-tuned on low resolutions.
937
+ strength (`float`, *optional*, defaults to 0.8):
938
+ Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
939
+ starting point and more noise is added the higher the `strength`. The number of denoising steps depends
940
+ on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
941
+ process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
942
+ essentially ignores `image`.
943
+ num_inference_steps (`int`, *optional*, defaults to 50):
944
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
945
+ expense of slower inference.
946
+ guidance_scale (`float`, *optional*, defaults to 7.5):
947
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
948
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
949
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
950
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
951
+ usually at the expense of lower image quality.
952
+ negative_prompt (`str` or `List[str]`, *optional*):
953
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
954
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
955
+ less than `1`).
956
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
957
+ The number of images to generate per prompt.
958
+ eta (`float`, *optional*, defaults to 0.0):
959
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
960
+ [`schedulers.DDIMScheduler`], will be ignored for others.
961
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
962
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
963
+ to make generation deterministic.
964
+ latents (`torch.Tensor`, *optional*):
965
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
966
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
967
+ tensor will ge generated by sampling using the supplied random `generator`.
968
+ prompt_embeds (`torch.Tensor`, *optional*):
969
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
970
+ provided, text embeddings will be generated from `prompt` input argument.
971
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
972
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
973
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
974
+ argument.
975
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
976
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
977
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
978
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
979
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
980
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
981
+ input argument.
982
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
983
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
984
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
985
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
986
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
987
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
988
+ output_type (`str`, *optional*, defaults to `"pil"`):
989
+ The output format of the generate image. Choose between
990
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
991
+ return_dict (`bool`, *optional*, defaults to `True`):
992
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
993
+ plain tuple.
994
+ cross_attention_kwargs (`dict`, *optional*):
995
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
996
+ `self.processor` in
997
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
998
+ controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
999
+ The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
1000
+ to the residual in the original unet. If multiple ControlNets are specified in init, you can set the
1001
+ corresponding scale as a list.
1002
+ control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0):
1003
+ The percentage of total steps at which the controlnet starts applying.
1004
+ control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0):
1005
+ The percentage of total steps at which the controlnet stops applying.
1006
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1007
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
1008
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
1009
+ explained in section 2.2 of
1010
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1011
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1012
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
1013
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
1014
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
1015
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1016
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1017
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
1018
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
1019
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1020
+ clip_skip (`int`, *optional*):
1021
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
1022
+ the output of the pre-final layer will be used for computing the prompt embeddings.
1023
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
1024
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
1025
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
1026
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
1027
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1028
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
1029
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1030
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1031
+ `._callback_tensor_inputs` attribute of your pipeline class.
1032
+
1033
+ Examples:
1034
+
1035
+ Returns:
1036
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
1037
+ [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple`
1038
+ containing the output images.
1039
+ """
1040
+
1041
+ callback = kwargs.pop("callback", None)
1042
+ callback_steps = kwargs.pop("callback_steps", None)
1043
+
1044
+ if callback is not None:
1045
+ deprecate(
1046
+ "callback",
1047
+ "1.0.0",
1048
+ "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
1049
+ )
1050
+ if callback_steps is not None:
1051
+ deprecate(
1052
+ "callback_steps",
1053
+ "1.0.0",
1054
+ "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
1055
+ )
1056
+
1057
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
1058
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
1059
+
1060
+ controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet
1061
+
1062
+ # align format for control guidance
1063
+ if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list):
1064
+ control_guidance_start = len(control_guidance_end) * [control_guidance_start]
1065
+ elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list):
1066
+ control_guidance_end = len(control_guidance_start) * [control_guidance_end]
1067
+ elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list):
1068
+ mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1
1069
+ control_guidance_start, control_guidance_end = (
1070
+ mult * [control_guidance_start],
1071
+ mult * [control_guidance_end],
1072
+ )
1073
+
1074
+ # from IPython import embed; embed()
1075
+ # 1. Check inputs. Raise error if not correct
1076
+ self.check_inputs(
1077
+ prompt,
1078
+ control_image,
1079
+ strength,
1080
+ num_inference_steps,
1081
+ callback_steps,
1082
+ negative_prompt,
1083
+ prompt_embeds,
1084
+ negative_prompt_embeds,
1085
+ pooled_prompt_embeds,
1086
+ negative_pooled_prompt_embeds,
1087
+ ip_adapter_image,
1088
+ ip_adapter_image_embeds,
1089
+ controlnet_conditioning_scale,
1090
+ control_guidance_start,
1091
+ control_guidance_end,
1092
+ callback_on_step_end_tensor_inputs,
1093
+ )
1094
+
1095
+ self._guidance_scale = guidance_scale
1096
+ self._clip_skip = clip_skip
1097
+ self._cross_attention_kwargs = cross_attention_kwargs
1098
+
1099
+ # 2. Define call parameters
1100
+ if prompt is not None and isinstance(prompt, str):
1101
+ batch_size = 1
1102
+ elif prompt is not None and isinstance(prompt, list):
1103
+ batch_size = len(prompt)
1104
+ else:
1105
+ batch_size = prompt_embeds.shape[0]
1106
+
1107
+ device = self._execution_device
1108
+
1109
+ if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float):
1110
+ controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets)
1111
+
1112
+ # 3.1. Encode input prompt
1113
+ text_encoder_lora_scale = (
1114
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1115
+ )
1116
+ (
1117
+ prompt_embeds,
1118
+ negative_prompt_embeds,
1119
+ pooled_prompt_embeds,
1120
+ negative_pooled_prompt_embeds,
1121
+ ) = self.encode_prompt(
1122
+ prompt,
1123
+ device,
1124
+ num_images_per_prompt,
1125
+ self.do_classifier_free_guidance,
1126
+ negative_prompt,
1127
+ prompt_embeds=prompt_embeds,
1128
+ negative_prompt_embeds=negative_prompt_embeds,
1129
+ pooled_prompt_embeds=pooled_prompt_embeds,
1130
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1131
+ lora_scale=text_encoder_lora_scale,
1132
+ )
1133
+
1134
+ # 3.2 Encode ip_adapter_image
1135
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1136
+ image_embeds = self.prepare_ip_adapter_image_embeds(
1137
+ ip_adapter_image,
1138
+ ip_adapter_image_embeds,
1139
+ device,
1140
+ batch_size * num_images_per_prompt,
1141
+ self.do_classifier_free_guidance,
1142
+ )
1143
+
1144
+ # 4. Prepare image and controlnet_conditioning_image
1145
+ image = self.image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
1146
+
1147
+ if isinstance(controlnet, ControlNetModel):
1148
+ control_image = self.prepare_control_image(
1149
+ image=control_image,
1150
+ width=width,
1151
+ height=height,
1152
+ batch_size=batch_size * num_images_per_prompt,
1153
+ num_images_per_prompt=num_images_per_prompt,
1154
+ device=device,
1155
+ dtype=controlnet.dtype,
1156
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1157
+ guess_mode=guess_mode,
1158
+ )
1159
+ height, width = control_image.shape[-2:]
1160
+ elif isinstance(controlnet, MultiControlNetModel):
1161
+ control_images = []
1162
+
1163
+ for control_image_ in control_image:
1164
+ control_image_ = self.prepare_control_image(
1165
+ image=control_image_,
1166
+ width=width,
1167
+ height=height,
1168
+ batch_size=batch_size * num_images_per_prompt,
1169
+ num_images_per_prompt=num_images_per_prompt,
1170
+ device=device,
1171
+ dtype=controlnet.dtype,
1172
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1173
+ guess_mode=guess_mode,
1174
+ )
1175
+
1176
+ control_images.append(control_image_)
1177
+
1178
+ control_image = control_images
1179
+ height, width = control_image[0].shape[-2:]
1180
+ else:
1181
+ assert False
1182
+
1183
+ # 5. Prepare timesteps
1184
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
1185
+ timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
1186
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
1187
+ self._num_timesteps = len(timesteps)
1188
+
1189
+ # 6. Prepare latent variables
1190
+
1191
+ num_channels_latents = self.unet.config.in_channels
1192
+ if latents is None:
1193
+ if strength >= 1.0:
1194
+ latents = self.prepare_latents_t2i(
1195
+ batch_size * num_images_per_prompt,
1196
+ num_channels_latents,
1197
+ height,
1198
+ width,
1199
+ prompt_embeds.dtype,
1200
+ device,
1201
+ generator,
1202
+ latents,
1203
+ )
1204
+ else:
1205
+ latents = self.prepare_latents(
1206
+ image,
1207
+ latent_timestep,
1208
+ batch_size,
1209
+ num_images_per_prompt,
1210
+ prompt_embeds.dtype,
1211
+ device,
1212
+ generator,
1213
+ True,
1214
+ )
1215
+
1216
+
1217
+ # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1218
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1219
+
1220
+ # 7.1 Create tensor stating which controlnets to keep
1221
+ controlnet_keep = []
1222
+ for i in range(len(timesteps)):
1223
+ keeps = [
1224
+ 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
1225
+ for s, e in zip(control_guidance_start, control_guidance_end)
1226
+ ]
1227
+ controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps)
1228
+
1229
+ # 7.2 Prepare added time ids & embeddings
1230
+ if isinstance(control_image, list):
1231
+ original_size = original_size or control_image[0].shape[-2:]
1232
+ else:
1233
+ original_size = original_size or control_image.shape[-2:]
1234
+ target_size = target_size or (height, width)
1235
+
1236
+ # 7. Prepare added time ids & embeddings
1237
+ add_text_embeds = pooled_prompt_embeds
1238
+ add_time_ids = self._get_add_time_ids(
1239
+ original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
1240
+ )
1241
+
1242
+ if self.do_classifier_free_guidance:
1243
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1244
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
1245
+ add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
1246
+
1247
+ prompt_embeds = prompt_embeds.to(device)
1248
+ add_text_embeds = add_text_embeds.to(device)
1249
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
1250
+
1251
+ # 8. Denoising loop
1252
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
1253
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1254
+ for i, t in enumerate(timesteps):
1255
+ # expand the latents if we are doing classifier free guidance
1256
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1257
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1258
+
1259
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1260
+
1261
+ # controlnet(s) inference
1262
+ if guess_mode and self.do_classifier_free_guidance:
1263
+ # Infer ControlNet only for the conditional batch.
1264
+ control_model_input = latents
1265
+ control_model_input = self.scheduler.scale_model_input(control_model_input, t)
1266
+ controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
1267
+ controlnet_added_cond_kwargs = {
1268
+ "text_embeds": add_text_embeds.chunk(2)[1],
1269
+ "time_ids": add_time_ids.chunk(2)[1],
1270
+ }
1271
+ else:
1272
+ control_model_input = latent_model_input
1273
+ controlnet_prompt_embeds = prompt_embeds
1274
+ controlnet_added_cond_kwargs = added_cond_kwargs
1275
+
1276
+ if isinstance(controlnet_keep[i], list):
1277
+ cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])]
1278
+ else:
1279
+ controlnet_cond_scale = controlnet_conditioning_scale
1280
+ if isinstance(controlnet_cond_scale, list):
1281
+ controlnet_cond_scale = controlnet_cond_scale[0]
1282
+ cond_scale = controlnet_cond_scale * controlnet_keep[i]
1283
+
1284
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
1285
+ control_model_input,
1286
+ t,
1287
+ encoder_hidden_states=controlnet_prompt_embeds,
1288
+ controlnet_cond=control_image,
1289
+ conditioning_scale=cond_scale,
1290
+ guess_mode=guess_mode,
1291
+ added_cond_kwargs=controlnet_added_cond_kwargs,
1292
+ return_dict=False,
1293
+ )
1294
+
1295
+ if guess_mode and self.do_classifier_free_guidance:
1296
+ # Infered ControlNet only for the conditional batch.
1297
+ # To apply the output of ControlNet to both the unconditional and conditional batches,
1298
+ # add 0 to the unconditional batch to keep it unchanged.
1299
+ down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples]
1300
+ mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample])
1301
+
1302
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1303
+ added_cond_kwargs["image_embeds"] = image_embeds
1304
+
1305
+ # predict the noise residual
1306
+ noise_pred = self.unet(
1307
+ latent_model_input,
1308
+ t,
1309
+ encoder_hidden_states=prompt_embeds,
1310
+ cross_attention_kwargs=self.cross_attention_kwargs,
1311
+ down_block_additional_residuals=down_block_res_samples,
1312
+ mid_block_additional_residual=mid_block_res_sample,
1313
+ added_cond_kwargs=added_cond_kwargs,
1314
+ return_dict=False,
1315
+ )[0]
1316
+
1317
+ # perform guidance
1318
+ if self.do_classifier_free_guidance:
1319
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1320
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
1321
+
1322
+ # compute the previous noisy sample x_t -> x_t-1
1323
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1324
+
1325
+ # call the callback, if provided
1326
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1327
+ progress_bar.update()
1328
+ if callback is not None and i % callback_steps == 0:
1329
+ step_idx = i // getattr(self.scheduler, "order", 1)
1330
+ callback(step_idx, t, latents)
1331
+
1332
+ # If we do sequential model offloading, let's offload unet and controlnet
1333
+ # manually for max memory savings
1334
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
1335
+ self.unet.to("cpu")
1336
+ self.controlnet.to("cpu")
1337
+ torch.cuda.empty_cache()
1338
+
1339
+ if not output_type == "latent":
1340
+ # make sure the VAE is in float32 mode, as it overflows in float16
1341
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1342
+
1343
+ if needs_upcasting:
1344
+ self.upcast_vae()
1345
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1346
+
1347
+ latents = latents / self.vae.config.scaling_factor
1348
+ image = self.vae.decode(latents, return_dict=False)[0]
1349
+
1350
+ # cast back to fp16 if needed
1351
+ if needs_upcasting:
1352
+ self.vae.to(dtype=torch.float16)
1353
+ else:
1354
+ image = latents
1355
+ return StableDiffusionXLPipelineOutput(images=image)
1356
+
1357
+ image = self.image_processor.postprocess(image, output_type=output_type)
1358
+
1359
+ # Offload all models
1360
+ self.maybe_free_model_hooks()
1361
+
1362
+ if not return_dict:
1363
+ return (image,)
1364
+
1365
+ return StableDiffusionXLPipelineOutput(images=image)
kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256.py ADDED
@@ -0,0 +1,841 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import sys
15
+ import os
16
+ sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
17
+ from kolors.models.modeling_chatglm import ChatGLMModel
18
+ from kolors.models.tokenization_chatglm import ChatGLMTokenizer
19
+ import inspect
20
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
21
+ import torch
22
+ from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
23
+ from transformers import XLMRobertaModel, ChineseCLIPTextModel
24
+
25
+ from diffusers.image_processor import VaeImageProcessor
26
+ from diffusers.loaders import FromSingleFileMixin, LoraLoaderMixin, TextualInversionLoaderMixin
27
+ from diffusers.models import AutoencoderKL, UNet2DConditionModel
28
+ from diffusers.models.attention_processor import (
29
+ AttnProcessor2_0,
30
+ LoRAAttnProcessor2_0,
31
+ LoRAXFormersAttnProcessor,
32
+ XFormersAttnProcessor,
33
+ )
34
+ from diffusers.schedulers import KarrasDiffusionSchedulers
35
+ from diffusers.utils import (
36
+ is_accelerate_available,
37
+ is_accelerate_version,
38
+ logging,
39
+ replace_example_docstring,
40
+ )
41
+ try:
42
+ from diffusers.utils import randn_tensor
43
+ except:
44
+ from diffusers.utils.torch_utils import randn_tensor
45
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
46
+ from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
47
+
48
+
49
+
50
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
51
+
52
+ EXAMPLE_DOC_STRING = """
53
+ Examples:
54
+ ```py
55
+ >>> import torch
56
+ >>> from diffusers import StableDiffusionXLPipeline
57
+
58
+ >>> pipe = StableDiffusionXLPipeline.from_pretrained(
59
+ ... "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16
60
+ ... )
61
+ >>> pipe = pipe.to("cuda")
62
+
63
+ >>> prompt = "a photo of an astronaut riding a horse on mars"
64
+ >>> image = pipe(prompt).images[0]
65
+ ```
66
+ """
67
+
68
+
69
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
70
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
71
+ """
72
+ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
73
+ Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
74
+ """
75
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
76
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
77
+ # rescale the results from guidance (fixes overexposure)
78
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
79
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
80
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
81
+ return noise_cfg
82
+
83
+
84
+ class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin):
85
+ r"""
86
+ Pipeline for text-to-image generation using Stable Diffusion XL.
87
+
88
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
89
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
90
+
91
+ In addition the pipeline inherits the following loading methods:
92
+ - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
93
+ - *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
94
+ - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
95
+
96
+ as well as the following saving methods:
97
+ - *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`]
98
+
99
+ Args:
100
+ vae ([`AutoencoderKL`]):
101
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
102
+ text_encoder ([`CLIPTextModel`]):
103
+ Frozen text-encoder. Stable Diffusion XL uses the text portion of
104
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
105
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
106
+
107
+ tokenizer (`CLIPTokenizer`):
108
+ Tokenizer of class
109
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
110
+
111
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
112
+ scheduler ([`SchedulerMixin`]):
113
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
114
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
115
+ """
116
+
117
+ def __init__(
118
+ self,
119
+ vae: AutoencoderKL,
120
+ text_encoder: ChatGLMModel,
121
+ tokenizer: ChatGLMTokenizer,
122
+ unet: UNet2DConditionModel,
123
+ scheduler: KarrasDiffusionSchedulers,
124
+ force_zeros_for_empty_prompt: bool = True,
125
+ ):
126
+ super().__init__()
127
+
128
+ self.register_modules(
129
+ vae=vae,
130
+ text_encoder=text_encoder,
131
+ tokenizer=tokenizer,
132
+ unet=unet,
133
+ scheduler=scheduler,
134
+ )
135
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
136
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
137
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
138
+ self.default_sample_size = self.unet.config.sample_size
139
+
140
+ # self.watermark = StableDiffusionXLWatermarker()
141
+
142
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
143
+ def enable_vae_slicing(self):
144
+ r"""
145
+ Enable sliced VAE decoding.
146
+
147
+ When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
148
+ steps. This is useful to save some memory and allow larger batch sizes.
149
+ """
150
+ self.vae.enable_slicing()
151
+
152
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
153
+ def disable_vae_slicing(self):
154
+ r"""
155
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
156
+ computing decoding in one step.
157
+ """
158
+ self.vae.disable_slicing()
159
+
160
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
161
+ def enable_vae_tiling(self):
162
+ r"""
163
+ Enable tiled VAE decoding.
164
+
165
+ When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
166
+ several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
167
+ """
168
+ self.vae.enable_tiling()
169
+
170
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
171
+ def disable_vae_tiling(self):
172
+ r"""
173
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
174
+ computing decoding in one step.
175
+ """
176
+ self.vae.disable_tiling()
177
+
178
+ def enable_sequential_cpu_offload(self, gpu_id=0):
179
+ r"""
180
+ Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
181
+ text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
182
+ `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
183
+ Note that offloading happens on a submodule basis. Memory savings are higher than with
184
+ `enable_model_cpu_offload`, but performance is lower.
185
+ """
186
+ if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
187
+ from accelerate import cpu_offload
188
+ else:
189
+ raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
190
+
191
+ device = torch.device(f"cuda:{gpu_id}")
192
+
193
+ if self.device.type != "cpu":
194
+ self.to("cpu", silence_dtype_warnings=True)
195
+ torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
196
+
197
+ for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
198
+ cpu_offload(cpu_offloaded_model, device)
199
+
200
+ def enable_model_cpu_offload(self, gpu_id=0):
201
+ r"""
202
+ Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
203
+ to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
204
+ method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
205
+ `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
206
+ """
207
+ if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
208
+ from accelerate import cpu_offload_with_hook
209
+ else:
210
+ raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
211
+
212
+ device = torch.device(f"cuda:{gpu_id}")
213
+
214
+ if self.device.type != "cpu":
215
+ self.to("cpu", silence_dtype_warnings=True)
216
+ torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
217
+
218
+ model_sequence = (
219
+ [self.text_encoder]
220
+ )
221
+ model_sequence.extend([self.unet, self.vae])
222
+
223
+ hook = None
224
+ for cpu_offloaded_model in model_sequence:
225
+ _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
226
+
227
+ # We'll offload the last model manually.
228
+ self.final_offload_hook = hook
229
+
230
+ @property
231
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
232
+ def _execution_device(self):
233
+ r"""
234
+ Returns the device on which the pipeline's models will be executed. After calling
235
+ `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
236
+ hooks.
237
+ """
238
+ if not hasattr(self.unet, "_hf_hook"):
239
+ return self.device
240
+ for module in self.unet.modules():
241
+ if (
242
+ hasattr(module, "_hf_hook")
243
+ and hasattr(module._hf_hook, "execution_device")
244
+ and module._hf_hook.execution_device is not None
245
+ ):
246
+ return torch.device(module._hf_hook.execution_device)
247
+ return self.device
248
+
249
+ def encode_prompt(
250
+ self,
251
+ prompt,
252
+ device: Optional[torch.device] = None,
253
+ num_images_per_prompt: int = 1,
254
+ do_classifier_free_guidance: bool = True,
255
+ negative_prompt=None,
256
+ prompt_embeds: Optional[torch.FloatTensor] = None,
257
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
258
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
259
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
260
+ lora_scale: Optional[float] = None,
261
+ ):
262
+ r"""
263
+ Encodes the prompt into text encoder hidden states.
264
+
265
+ Args:
266
+ prompt (`str` or `List[str]`, *optional*):
267
+ prompt to be encoded
268
+ device: (`torch.device`):
269
+ torch device
270
+ num_images_per_prompt (`int`):
271
+ number of images that should be generated per prompt
272
+ do_classifier_free_guidance (`bool`):
273
+ whether to use classifier free guidance or not
274
+ negative_prompt (`str` or `List[str]`, *optional*):
275
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
276
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
277
+ less than `1`).
278
+ prompt_embeds (`torch.FloatTensor`, *optional*):
279
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
280
+ provided, text embeddings will be generated from `prompt` input argument.
281
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
282
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
283
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
284
+ argument.
285
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
286
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
287
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
288
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
289
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
290
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
291
+ input argument.
292
+ lora_scale (`float`, *optional*):
293
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
294
+ """
295
+ # from IPython import embed; embed(); exit()
296
+ device = device or self._execution_device
297
+
298
+ # set lora scale so that monkey patched LoRA
299
+ # function of text encoder can correctly access it
300
+ if lora_scale is not None and isinstance(self, LoraLoaderMixin):
301
+ self._lora_scale = lora_scale
302
+
303
+ if prompt is not None and isinstance(prompt, str):
304
+ batch_size = 1
305
+ elif prompt is not None and isinstance(prompt, list):
306
+ batch_size = len(prompt)
307
+ else:
308
+ batch_size = prompt_embeds.shape[0]
309
+
310
+ # Define tokenizers and text encoders
311
+ tokenizers = [self.tokenizer]
312
+ text_encoders = [self.text_encoder]
313
+
314
+ if prompt_embeds is None:
315
+ # textual inversion: procecss multi-vector tokens if necessary
316
+ prompt_embeds_list = []
317
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
318
+ if isinstance(self, TextualInversionLoaderMixin):
319
+ prompt = self.maybe_convert_prompt(prompt, tokenizer)
320
+
321
+ text_inputs = tokenizer(
322
+ prompt,
323
+ padding="max_length",
324
+ max_length=256,
325
+ truncation=True,
326
+ return_tensors="pt",
327
+ ).to('cuda')
328
+ output = text_encoder(
329
+ input_ids=text_inputs['input_ids'] ,
330
+ attention_mask=text_inputs['attention_mask'],
331
+ position_ids=text_inputs['position_ids'],
332
+ output_hidden_states=True)
333
+ prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
334
+ pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
335
+ bs_embed, seq_len, _ = prompt_embeds.shape
336
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
337
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
338
+
339
+ prompt_embeds_list.append(prompt_embeds)
340
+
341
+ # prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
342
+ prompt_embeds = prompt_embeds_list[0]
343
+
344
+ # get unconditional embeddings for classifier free guidance
345
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
346
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
347
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
348
+ negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
349
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
350
+ # negative_prompt = negative_prompt or ""
351
+ uncond_tokens: List[str]
352
+ if negative_prompt is None:
353
+ uncond_tokens = [""] * batch_size
354
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
355
+ raise TypeError(
356
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
357
+ f" {type(prompt)}."
358
+ )
359
+ elif isinstance(negative_prompt, str):
360
+ uncond_tokens = [negative_prompt]
361
+ elif batch_size != len(negative_prompt):
362
+ raise ValueError(
363
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
364
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
365
+ " the batch size of `prompt`."
366
+ )
367
+ else:
368
+ uncond_tokens = negative_prompt
369
+
370
+ negative_prompt_embeds_list = []
371
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
372
+ # textual inversion: procecss multi-vector tokens if necessary
373
+ if isinstance(self, TextualInversionLoaderMixin):
374
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)
375
+
376
+ max_length = prompt_embeds.shape[1]
377
+ uncond_input = tokenizer(
378
+ uncond_tokens,
379
+ padding="max_length",
380
+ max_length=max_length,
381
+ truncation=True,
382
+ return_tensors="pt",
383
+ ).to('cuda')
384
+ output = text_encoder(
385
+ input_ids=uncond_input['input_ids'] ,
386
+ attention_mask=uncond_input['attention_mask'],
387
+ position_ids=uncond_input['position_ids'],
388
+ output_hidden_states=True)
389
+ negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
390
+ negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
391
+
392
+ if do_classifier_free_guidance:
393
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
394
+ seq_len = negative_prompt_embeds.shape[1]
395
+
396
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
397
+
398
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
399
+ negative_prompt_embeds = negative_prompt_embeds.view(
400
+ batch_size * num_images_per_prompt, seq_len, -1
401
+ )
402
+
403
+ # For classifier free guidance, we need to do two forward passes.
404
+ # Here we concatenate the unconditional and text embeddings into a single batch
405
+ # to avoid doing two forward passes
406
+
407
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
408
+
409
+ # negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
410
+ negative_prompt_embeds = negative_prompt_embeds_list[0]
411
+
412
+ bs_embed = pooled_prompt_embeds.shape[0]
413
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
414
+ bs_embed * num_images_per_prompt, -1
415
+ )
416
+ if do_classifier_free_guidance:
417
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
418
+ bs_embed * num_images_per_prompt, -1
419
+ )
420
+
421
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
422
+
423
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
424
+ def prepare_extra_step_kwargs(self, generator, eta):
425
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
426
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
427
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
428
+ # and should be between [0, 1]
429
+
430
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
431
+ extra_step_kwargs = {}
432
+ if accepts_eta:
433
+ extra_step_kwargs["eta"] = eta
434
+
435
+ # check if the scheduler accepts generator
436
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
437
+ if accepts_generator:
438
+ extra_step_kwargs["generator"] = generator
439
+ return extra_step_kwargs
440
+
441
+ def check_inputs(
442
+ self,
443
+ prompt,
444
+ height,
445
+ width,
446
+ callback_steps,
447
+ negative_prompt=None,
448
+ prompt_embeds=None,
449
+ negative_prompt_embeds=None,
450
+ pooled_prompt_embeds=None,
451
+ negative_pooled_prompt_embeds=None,
452
+ ):
453
+ if height % 8 != 0 or width % 8 != 0:
454
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
455
+
456
+ if (callback_steps is None) or (
457
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
458
+ ):
459
+ raise ValueError(
460
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
461
+ f" {type(callback_steps)}."
462
+ )
463
+
464
+ if prompt is not None and prompt_embeds is not None:
465
+ raise ValueError(
466
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
467
+ " only forward one of the two."
468
+ )
469
+ elif prompt is None and prompt_embeds is None:
470
+ raise ValueError(
471
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
472
+ )
473
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
474
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
475
+
476
+ if negative_prompt is not None and negative_prompt_embeds is not None:
477
+ raise ValueError(
478
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
479
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
480
+ )
481
+
482
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
483
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
484
+ raise ValueError(
485
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
486
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
487
+ f" {negative_prompt_embeds.shape}."
488
+ )
489
+
490
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
491
+ raise ValueError(
492
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
493
+ )
494
+
495
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
496
+ raise ValueError(
497
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
498
+ )
499
+
500
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
501
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
502
+ shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
503
+ if isinstance(generator, list) and len(generator) != batch_size:
504
+ raise ValueError(
505
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
506
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
507
+ )
508
+
509
+ if latents is None:
510
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
511
+ else:
512
+ latents = latents.to(device)
513
+
514
+ # scale the initial noise by the standard deviation required by the scheduler
515
+ latents = latents * self.scheduler.init_noise_sigma
516
+ return latents
517
+
518
+ def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
519
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
520
+
521
+ passed_add_embed_dim = (
522
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + 4096
523
+ )
524
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
525
+
526
+ if expected_add_embed_dim != passed_add_embed_dim:
527
+ raise ValueError(
528
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
529
+ )
530
+
531
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
532
+ return add_time_ids
533
+
534
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
535
+ def upcast_vae(self):
536
+ dtype = self.vae.dtype
537
+ self.vae.to(dtype=torch.float32)
538
+ use_torch_2_0_or_xformers = isinstance(
539
+ self.vae.decoder.mid_block.attentions[0].processor,
540
+ (
541
+ AttnProcessor2_0,
542
+ XFormersAttnProcessor,
543
+ LoRAXFormersAttnProcessor,
544
+ LoRAAttnProcessor2_0,
545
+ ),
546
+ )
547
+ # if xformers or torch_2_0 is used attention block does not need
548
+ # to be in float32 which can save lots of memory
549
+ if use_torch_2_0_or_xformers:
550
+ self.vae.post_quant_conv.to(dtype)
551
+ self.vae.decoder.conv_in.to(dtype)
552
+ self.vae.decoder.mid_block.to(dtype)
553
+
554
+ @torch.no_grad()
555
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
556
+ def __call__(
557
+ self,
558
+ prompt: Union[str, List[str]] = None,
559
+ height: Optional[int] = None,
560
+ width: Optional[int] = None,
561
+ num_inference_steps: int = 50,
562
+ denoising_end: Optional[float] = None,
563
+ guidance_scale: float = 5.0,
564
+ negative_prompt: Optional[Union[str, List[str]]] = None,
565
+ num_images_per_prompt: Optional[int] = 1,
566
+ eta: float = 0.0,
567
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
568
+ latents: Optional[torch.FloatTensor] = None,
569
+ prompt_embeds: Optional[torch.FloatTensor] = None,
570
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
571
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
572
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
573
+ output_type: Optional[str] = "pil",
574
+ return_dict: bool = True,
575
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
576
+ callback_steps: int = 1,
577
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
578
+ guidance_rescale: float = 0.0,
579
+ original_size: Optional[Tuple[int, int]] = None,
580
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
581
+ target_size: Optional[Tuple[int, int]] = None,
582
+ use_dynamic_threshold: Optional[bool] = False,
583
+ ):
584
+ r"""
585
+ Function invoked when calling the pipeline for generation.
586
+
587
+ Args:
588
+ prompt (`str` or `List[str]`, *optional*):
589
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
590
+ instead.
591
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
592
+ The height in pixels of the generated image.
593
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
594
+ The width in pixels of the generated image.
595
+ num_inference_steps (`int`, *optional*, defaults to 50):
596
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
597
+ expense of slower inference.
598
+ denoising_end (`float`, *optional*):
599
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
600
+ completed before it is intentionally prematurely terminated. For instance, if denoising_end is set to
601
+ 0.7 and `num_inference_steps` is fixed at 50, the process will execute only 35 (i.e., 0.7 * 50)
602
+ Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
603
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
604
+ guidance_scale (`float`, *optional*, defaults to 7.5):
605
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
606
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
607
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
608
+ negative_prompt (`str` or `List[str]`, *optional*):
609
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
610
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
611
+ less than `1`).
612
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
613
+ The number of images to generate per prompt.
614
+ eta (`float`, *optional*, defaults to 0.0):
615
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
616
+ [`schedulers.DDIMScheduler`], will be ignored for others.
617
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
618
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
619
+ to make generation deterministic.
620
+ latents (`torch.FloatTensor`, *optional*):
621
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
622
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
623
+ tensor will ge generated by sampling using the supplied random `generator`.
624
+ prompt_embeds (`torch.FloatTensor`, *optional*):
625
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
626
+ provided, text embeddings will be generated from `prompt` input argument.
627
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
628
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
629
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
630
+ argument.
631
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
632
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
633
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
634
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
635
+ output_type (`str`, *optional*, defaults to `"pil"`):
636
+ The output format of the generate image. Choose between
637
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
638
+ return_dict (`bool`, *optional*, defaults to `True`):
639
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
640
+ callback (`Callable`, *optional*):
641
+ A function that will be called every `callback_steps` steps during inference. The function will be
642
+ callback_steps (`int`, *optional*, defaults to 1):
643
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
644
+ called at every step.
645
+ cross_attention_kwargs (`dict`, *optional*):
646
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
647
+ `self.processor` in
648
+ [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
649
+ guidance_rescale (`float`, *optional*, defaults to 0.7):
650
+ Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
651
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
652
+ [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
653
+ Guidance rescale factor should fix overexposure when using zero terminal SNR.
654
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
655
+ TODO
656
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
657
+ TODO
658
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
659
+ TODO
660
+
661
+ Examples:
662
+
663
+ Returns:
664
+ [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
665
+ [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
666
+ `tuple. When returning a tuple, the first element is a list with the generated images, and the second
667
+ element is a list of `bool`s denoting whether the corresponding generated image likely represents
668
+ "not-safe-for-work" (nsfw) content, according to the `safety_checker`.
669
+ """
670
+ # 0. Default height and width to unet
671
+ height = height or self.default_sample_size * self.vae_scale_factor
672
+ width = width or self.default_sample_size * self.vae_scale_factor
673
+
674
+ original_size = original_size or (height, width)
675
+ target_size = target_size or (height, width)
676
+
677
+ # 1. Check inputs. Raise error if not correct
678
+ self.check_inputs(
679
+ prompt,
680
+ height,
681
+ width,
682
+ callback_steps,
683
+ negative_prompt,
684
+ prompt_embeds,
685
+ negative_prompt_embeds,
686
+ pooled_prompt_embeds,
687
+ negative_pooled_prompt_embeds,
688
+ )
689
+
690
+ # 2. Define call parameters
691
+ if prompt is not None and isinstance(prompt, str):
692
+ batch_size = 1
693
+ elif prompt is not None and isinstance(prompt, list):
694
+ batch_size = len(prompt)
695
+ else:
696
+ batch_size = prompt_embeds.shape[0]
697
+
698
+ device = self._execution_device
699
+
700
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
701
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
702
+ # corresponds to doing no classifier free guidance.
703
+ do_classifier_free_guidance = guidance_scale > 1.0
704
+
705
+ # 3. Encode input prompt
706
+ text_encoder_lora_scale = (
707
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
708
+ )
709
+ (
710
+ prompt_embeds,
711
+ negative_prompt_embeds,
712
+ pooled_prompt_embeds,
713
+ negative_pooled_prompt_embeds,
714
+ ) = self.encode_prompt(
715
+ prompt,
716
+ device,
717
+ num_images_per_prompt,
718
+ do_classifier_free_guidance,
719
+ negative_prompt,
720
+ prompt_embeds=prompt_embeds,
721
+ negative_prompt_embeds=negative_prompt_embeds,
722
+ pooled_prompt_embeds=pooled_prompt_embeds,
723
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
724
+ lora_scale=text_encoder_lora_scale,
725
+ )
726
+
727
+ # 4. Prepare timesteps
728
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
729
+
730
+ timesteps = self.scheduler.timesteps
731
+
732
+ # 5. Prepare latent variables
733
+ num_channels_latents = self.unet.config.in_channels
734
+ latents = self.prepare_latents(
735
+ batch_size * num_images_per_prompt,
736
+ num_channels_latents,
737
+ height,
738
+ width,
739
+ prompt_embeds.dtype,
740
+ device,
741
+ generator,
742
+ latents,
743
+ )
744
+
745
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
746
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
747
+
748
+ # 7. Prepare added time ids & embeddings
749
+ add_text_embeds = pooled_prompt_embeds
750
+ add_time_ids = self._get_add_time_ids(
751
+ original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
752
+ )
753
+
754
+ if do_classifier_free_guidance:
755
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
756
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
757
+ add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
758
+
759
+ prompt_embeds = prompt_embeds.to(device)
760
+ add_text_embeds = add_text_embeds.to(device)
761
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
762
+
763
+ # 8. Denoising loop
764
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
765
+
766
+ # 7.1 Apply denoising_end
767
+ if denoising_end is not None:
768
+ num_inference_steps = int(round(denoising_end * num_inference_steps))
769
+ timesteps = timesteps[: num_warmup_steps + self.scheduler.order * num_inference_steps]
770
+
771
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
772
+ for i, t in enumerate(timesteps):
773
+ # expand the latents if we are doing classifier free guidance
774
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
775
+
776
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
777
+
778
+ # predict the noise residual
779
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
780
+ noise_pred = self.unet(
781
+ latent_model_input,
782
+ t,
783
+ encoder_hidden_states=prompt_embeds,
784
+ cross_attention_kwargs=cross_attention_kwargs,
785
+ added_cond_kwargs=added_cond_kwargs,
786
+ return_dict=False,
787
+ )[0]
788
+
789
+ # perform guidance
790
+ if do_classifier_free_guidance:
791
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
792
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
793
+ if use_dynamic_threshold:
794
+ DynamicThresh = DynThresh(maxSteps=num_inference_steps, experiment_mode=0)
795
+ noise_pred = DynamicThresh.dynthresh(noise_pred_text,
796
+ noise_pred_uncond,
797
+ guidance_scale,
798
+ None)
799
+
800
+ if do_classifier_free_guidance and guidance_rescale > 0.0:
801
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
802
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
803
+
804
+ # compute the previous noisy sample x_t -> x_t-1
805
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
806
+
807
+ # call the callback, if provided
808
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
809
+ progress_bar.update()
810
+ if callback is not None and i % callback_steps == 0:
811
+ callback(i, t, latents)
812
+
813
+ # make sureo the VAE is in float32 mode, as it overflows in float16
814
+ # torch.cuda.empty_cache()
815
+ if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
816
+ self.upcast_vae()
817
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
818
+
819
+
820
+ if not output_type == "latent":
821
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
822
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
823
+ else:
824
+ image = latents
825
+ return StableDiffusionXLPipelineOutput(images=image)
826
+
827
+ # image = self.watermark.apply_watermark(image)
828
+ image = self.image_processor.postprocess(image, output_type=output_type)
829
+
830
+ # Offload last model to CPU
831
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
832
+ self.final_offload_hook.offload()
833
+
834
+ if not return_dict:
835
+ return (image,)
836
+
837
+ return StableDiffusionXLPipelineOutput(images=image)
838
+
839
+
840
+ if __name__ == "__main__":
841
+ pass
kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256_inpainting.py ADDED
@@ -0,0 +1,1790 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import PIL.Image
20
+ import torch
21
+ from transformers import (
22
+ CLIPImageProcessor,
23
+ CLIPTextModel,
24
+ CLIPTextModelWithProjection,
25
+ CLIPTokenizer,
26
+ CLIPVisionModelWithProjection,
27
+ )
28
+
29
+ from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
30
+ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
31
+ from diffusers.loaders import (
32
+ FromSingleFileMixin,
33
+ IPAdapterMixin,
34
+ StableDiffusionXLLoraLoaderMixin,
35
+ TextualInversionLoaderMixin,
36
+ )
37
+ from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
38
+ from diffusers.models.attention_processor import (
39
+ AttnProcessor2_0,
40
+ LoRAAttnProcessor2_0,
41
+ LoRAXFormersAttnProcessor,
42
+ XFormersAttnProcessor,
43
+ )
44
+ from diffusers.models.lora import adjust_lora_scale_text_encoder
45
+ from diffusers.schedulers import KarrasDiffusionSchedulers
46
+ from diffusers.utils import (
47
+ USE_PEFT_BACKEND,
48
+ deprecate,
49
+ is_invisible_watermark_available,
50
+ is_torch_xla_available,
51
+ logging,
52
+ replace_example_docstring,
53
+ scale_lora_layers,
54
+ unscale_lora_layers,
55
+ )
56
+ from diffusers.utils.torch_utils import randn_tensor
57
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
58
+ from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
59
+
60
+
61
+ if is_invisible_watermark_available():
62
+ from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
63
+
64
+ if is_torch_xla_available():
65
+ import torch_xla.core.xla_model as xm
66
+
67
+ XLA_AVAILABLE = True
68
+ else:
69
+ XLA_AVAILABLE = False
70
+
71
+
72
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
73
+
74
+
75
+ EXAMPLE_DOC_STRING = """
76
+ Examples:
77
+ ```py
78
+ >>> import torch
79
+ >>> from diffusers import StableDiffusionXLInpaintPipeline
80
+ >>> from diffusers.utils import load_image
81
+
82
+ >>> pipe = StableDiffusionXLInpaintPipeline.from_pretrained(
83
+ ... "stabilityai/stable-diffusion-xl-base-1.0",
84
+ ... torch_dtype=torch.float16,
85
+ ... variant="fp16",
86
+ ... use_safetensors=True,
87
+ ... )
88
+ >>> pipe.to("cuda")
89
+
90
+ >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
91
+ >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
92
+
93
+ >>> init_image = load_image(img_url).convert("RGB")
94
+ >>> mask_image = load_image(mask_url).convert("RGB")
95
+
96
+ >>> prompt = "A majestic tiger sitting on a bench"
97
+ >>> image = pipe(
98
+ ... prompt=prompt, image=init_image, mask_image=mask_image, num_inference_steps=50, strength=0.80
99
+ ... ).images[0]
100
+ ```
101
+ """
102
+
103
+
104
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
105
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
106
+ """
107
+ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
108
+ Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
109
+ """
110
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
111
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
112
+ # rescale the results from guidance (fixes overexposure)
113
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
114
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
115
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
116
+ return noise_cfg
117
+
118
+
119
+ def mask_pil_to_torch(mask, height, width):
120
+ # preprocess mask
121
+ if isinstance(mask, (PIL.Image.Image, np.ndarray)):
122
+ mask = [mask]
123
+
124
+ if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image):
125
+ mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask]
126
+ mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0)
127
+ mask = mask.astype(np.float32) / 255.0
128
+ elif isinstance(mask, list) and isinstance(mask[0], np.ndarray):
129
+ mask = np.concatenate([m[None, None, :] for m in mask], axis=0)
130
+
131
+ mask = torch.from_numpy(mask)
132
+ return mask
133
+
134
+
135
+ def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False):
136
+ """
137
+ Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be
138
+ converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the
139
+ ``image`` and ``1`` for the ``mask``.
140
+
141
+ The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be
142
+ binarized (``mask > 0.5``) and cast to ``torch.float32`` too.
143
+
144
+ Args:
145
+ image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint.
146
+ It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width``
147
+ ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``.
148
+ mask (_type_): The mask to apply to the image, i.e. regions to inpaint.
149
+ It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width``
150
+ ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``.
151
+
152
+
153
+ Raises:
154
+ ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask
155
+ should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions.
156
+ TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not
157
+ (ot the other way around).
158
+
159
+ Returns:
160
+ tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4
161
+ dimensions: ``batch x channels x height x width``.
162
+ """
163
+
164
+ # checkpoint. TOD(Yiyi) - need to clean this up later
165
+ deprecation_message = "The prepare_mask_and_masked_image method is deprecated and will be removed in a future version. Please use VaeImageProcessor.preprocess instead"
166
+ deprecate(
167
+ "prepare_mask_and_masked_image",
168
+ "0.30.0",
169
+ deprecation_message,
170
+ )
171
+ if image is None:
172
+ raise ValueError("`image` input cannot be undefined.")
173
+
174
+ if mask is None:
175
+ raise ValueError("`mask_image` input cannot be undefined.")
176
+
177
+ if isinstance(image, torch.Tensor):
178
+ if not isinstance(mask, torch.Tensor):
179
+ mask = mask_pil_to_torch(mask, height, width)
180
+
181
+ if image.ndim == 3:
182
+ image = image.unsqueeze(0)
183
+
184
+ # Batch and add channel dim for single mask
185
+ if mask.ndim == 2:
186
+ mask = mask.unsqueeze(0).unsqueeze(0)
187
+
188
+ # Batch single mask or add channel dim
189
+ if mask.ndim == 3:
190
+ # Single batched mask, no channel dim or single mask not batched but channel dim
191
+ if mask.shape[0] == 1:
192
+ mask = mask.unsqueeze(0)
193
+
194
+ # Batched masks no channel dim
195
+ else:
196
+ mask = mask.unsqueeze(1)
197
+
198
+ assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions"
199
+ # assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions"
200
+ assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size"
201
+
202
+ # Check image is in [-1, 1]
203
+ # if image.min() < -1 or image.max() > 1:
204
+ # raise ValueError("Image should be in [-1, 1] range")
205
+
206
+ # Check mask is in [0, 1]
207
+ if mask.min() < 0 or mask.max() > 1:
208
+ raise ValueError("Mask should be in [0, 1] range")
209
+
210
+ # Binarize mask
211
+ mask[mask < 0.5] = 0
212
+ mask[mask >= 0.5] = 1
213
+
214
+ # Image as float32
215
+ image = image.to(dtype=torch.float32)
216
+ elif isinstance(mask, torch.Tensor):
217
+ raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not")
218
+ else:
219
+ # preprocess image
220
+ if isinstance(image, (PIL.Image.Image, np.ndarray)):
221
+ image = [image]
222
+ if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
223
+ # resize all images w.r.t passed height an width
224
+ image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image]
225
+ image = [np.array(i.convert("RGB"))[None, :] for i in image]
226
+ image = np.concatenate(image, axis=0)
227
+ elif isinstance(image, list) and isinstance(image[0], np.ndarray):
228
+ image = np.concatenate([i[None, :] for i in image], axis=0)
229
+
230
+ image = image.transpose(0, 3, 1, 2)
231
+ image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
232
+
233
+ mask = mask_pil_to_torch(mask, height, width)
234
+ mask[mask < 0.5] = 0
235
+ mask[mask >= 0.5] = 1
236
+
237
+ if image.shape[1] == 4:
238
+ # images are in latent space and thus can't
239
+ # be masked set masked_image to None
240
+ # we assume that the checkpoint is not an inpainting
241
+ # checkpoint. TOD(Yiyi) - need to clean this up later
242
+ masked_image = None
243
+ else:
244
+ masked_image = image * (mask < 0.5)
245
+
246
+ # n.b. ensure backwards compatibility as old function does not return image
247
+ if return_image:
248
+ return mask, masked_image, image
249
+
250
+ return mask, masked_image
251
+
252
+
253
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
254
+ def retrieve_latents(
255
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
256
+ ):
257
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
258
+ return encoder_output.latent_dist.sample(generator)
259
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
260
+ return encoder_output.latent_dist.mode()
261
+ elif hasattr(encoder_output, "latents"):
262
+ return encoder_output.latents
263
+ else:
264
+ raise AttributeError("Could not access latents of provided encoder_output")
265
+
266
+
267
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
268
+ def retrieve_timesteps(
269
+ scheduler,
270
+ num_inference_steps: Optional[int] = None,
271
+ device: Optional[Union[str, torch.device]] = None,
272
+ timesteps: Optional[List[int]] = None,
273
+ sigmas: Optional[List[float]] = None,
274
+ **kwargs,
275
+ ):
276
+ """
277
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
278
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
279
+
280
+ Args:
281
+ scheduler (`SchedulerMixin`):
282
+ The scheduler to get timesteps from.
283
+ num_inference_steps (`int`):
284
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
285
+ must be `None`.
286
+ device (`str` or `torch.device`, *optional*):
287
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
288
+ timesteps (`List[int]`, *optional*):
289
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
290
+ `num_inference_steps` and `sigmas` must be `None`.
291
+ sigmas (`List[float]`, *optional*):
292
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
293
+ `num_inference_steps` and `timesteps` must be `None`.
294
+
295
+ Returns:
296
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
297
+ second element is the number of inference steps.
298
+ """
299
+ if timesteps is not None and sigmas is not None:
300
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
301
+ if timesteps is not None:
302
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
303
+ if not accepts_timesteps:
304
+ raise ValueError(
305
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
306
+ f" timestep schedules. Please check whether you are using the correct scheduler."
307
+ )
308
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
309
+ timesteps = scheduler.timesteps
310
+ num_inference_steps = len(timesteps)
311
+ elif sigmas is not None:
312
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
313
+ if not accept_sigmas:
314
+ raise ValueError(
315
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
316
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
317
+ )
318
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
319
+ timesteps = scheduler.timesteps
320
+ num_inference_steps = len(timesteps)
321
+ else:
322
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
323
+ timesteps = scheduler.timesteps
324
+ return timesteps, num_inference_steps
325
+
326
+
327
+ class StableDiffusionXLInpaintPipeline(
328
+ DiffusionPipeline,
329
+ StableDiffusionMixin,
330
+ TextualInversionLoaderMixin,
331
+ StableDiffusionXLLoraLoaderMixin,
332
+ FromSingleFileMixin,
333
+ IPAdapterMixin,
334
+ ):
335
+ r"""
336
+ Pipeline for text-to-image generation using Stable Diffusion XL.
337
+
338
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
339
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
340
+
341
+ The pipeline also inherits the following loading methods:
342
+ - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
343
+ - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
344
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
345
+ - [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
346
+ - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
347
+
348
+ Args:
349
+ vae ([`AutoencoderKL`]):
350
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
351
+ text_encoder ([`CLIPTextModel`]):
352
+ Frozen text-encoder. Stable Diffusion XL uses the text portion of
353
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
354
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
355
+ text_encoder_2 ([` CLIPTextModelWithProjection`]):
356
+ Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
357
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
358
+ specifically the
359
+ [laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
360
+ variant.
361
+ tokenizer (`CLIPTokenizer`):
362
+ Tokenizer of class
363
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
364
+ tokenizer_2 (`CLIPTokenizer`):
365
+ Second Tokenizer of class
366
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
367
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
368
+ scheduler ([`SchedulerMixin`]):
369
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
370
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
371
+ requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`):
372
+ Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config
373
+ of `stabilityai/stable-diffusion-xl-refiner-1-0`.
374
+ force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
375
+ Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
376
+ `stabilityai/stable-diffusion-xl-base-1-0`.
377
+ add_watermarker (`bool`, *optional*):
378
+ Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
379
+ watermark output images. If not defined, it will default to True if the package is installed, otherwise no
380
+ watermarker will be used.
381
+ """
382
+
383
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
384
+
385
+ _optional_components = [
386
+ "tokenizer",
387
+ "tokenizer_2",
388
+ "text_encoder",
389
+ "text_encoder_2",
390
+ "image_encoder",
391
+ "feature_extractor",
392
+ ]
393
+ _callback_tensor_inputs = [
394
+ "latents",
395
+ "prompt_embeds",
396
+ "negative_prompt_embeds",
397
+ "add_text_embeds",
398
+ "add_time_ids",
399
+ "negative_pooled_prompt_embeds",
400
+ "add_neg_time_ids",
401
+ "mask",
402
+ "masked_image_latents",
403
+ ]
404
+
405
+ def __init__(
406
+ self,
407
+ vae: AutoencoderKL,
408
+ text_encoder: CLIPTextModel,
409
+ tokenizer: CLIPTokenizer,
410
+ unet: UNet2DConditionModel,
411
+ scheduler: KarrasDiffusionSchedulers,
412
+ tokenizer_2: CLIPTokenizer = None,
413
+ text_encoder_2: CLIPTextModelWithProjection = None,
414
+ image_encoder: CLIPVisionModelWithProjection = None,
415
+ feature_extractor: CLIPImageProcessor = None,
416
+ requires_aesthetics_score: bool = False,
417
+ force_zeros_for_empty_prompt: bool = True,
418
+ add_watermarker: Optional[bool] = None,
419
+ ):
420
+ super().__init__()
421
+
422
+ self.register_modules(
423
+ vae=vae,
424
+ text_encoder=text_encoder,
425
+ text_encoder_2=text_encoder_2,
426
+ tokenizer=tokenizer,
427
+ tokenizer_2=tokenizer_2,
428
+ unet=unet,
429
+ image_encoder=image_encoder,
430
+ feature_extractor=feature_extractor,
431
+ scheduler=scheduler,
432
+ )
433
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
434
+ self.register_to_config(requires_aesthetics_score=requires_aesthetics_score)
435
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
436
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
437
+ self.mask_processor = VaeImageProcessor(
438
+ vae_scale_factor=self.vae_scale_factor, do_normalize=False, do_binarize=True, do_convert_grayscale=True
439
+ )
440
+
441
+ add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
442
+
443
+ if add_watermarker:
444
+ self.watermark = StableDiffusionXLWatermarker()
445
+ else:
446
+ self.watermark = None
447
+
448
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
449
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
450
+ dtype = next(self.image_encoder.parameters()).dtype
451
+
452
+ if not isinstance(image, torch.Tensor):
453
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
454
+
455
+ image = image.to(device=device, dtype=dtype)
456
+ if output_hidden_states:
457
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
458
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
459
+ uncond_image_enc_hidden_states = self.image_encoder(
460
+ torch.zeros_like(image), output_hidden_states=True
461
+ ).hidden_states[-2]
462
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
463
+ num_images_per_prompt, dim=0
464
+ )
465
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
466
+ else:
467
+ image_embeds = self.image_encoder(image).image_embeds
468
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
469
+ uncond_image_embeds = torch.zeros_like(image_embeds)
470
+
471
+ return image_embeds, uncond_image_embeds
472
+
473
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
474
+ def prepare_ip_adapter_image_embeds(
475
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
476
+ ):
477
+ if ip_adapter_image_embeds is None:
478
+ if not isinstance(ip_adapter_image, list):
479
+ ip_adapter_image = [ip_adapter_image]
480
+
481
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
482
+ raise ValueError(
483
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
484
+ )
485
+
486
+ image_embeds = []
487
+ for single_ip_adapter_image, image_proj_layer in zip(
488
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
489
+ ):
490
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
491
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
492
+ single_ip_adapter_image, device, 1, output_hidden_state
493
+ )
494
+ single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
495
+ single_negative_image_embeds = torch.stack(
496
+ [single_negative_image_embeds] * num_images_per_prompt, dim=0
497
+ )
498
+
499
+ if do_classifier_free_guidance:
500
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
501
+ single_image_embeds = single_image_embeds.to(device)
502
+
503
+ image_embeds.append(single_image_embeds)
504
+ else:
505
+ repeat_dims = [1]
506
+ image_embeds = []
507
+ for single_image_embeds in ip_adapter_image_embeds:
508
+ if do_classifier_free_guidance:
509
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
510
+ single_image_embeds = single_image_embeds.repeat(
511
+ num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
512
+ )
513
+ single_negative_image_embeds = single_negative_image_embeds.repeat(
514
+ num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
515
+ )
516
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
517
+ else:
518
+ single_image_embeds = single_image_embeds.repeat(
519
+ num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
520
+ )
521
+ image_embeds.append(single_image_embeds)
522
+
523
+ return image_embeds
524
+
525
+ def encode_prompt(
526
+ self,
527
+ prompt,
528
+ device: Optional[torch.device] = None,
529
+ num_images_per_prompt: int = 1,
530
+ do_classifier_free_guidance: bool = True,
531
+ negative_prompt=None,
532
+ prompt_embeds: Optional[torch.FloatTensor] = None,
533
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
534
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
535
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
536
+ lora_scale: Optional[float] = None,
537
+ ):
538
+ r"""
539
+ Encodes the prompt into text encoder hidden states.
540
+
541
+ Args:
542
+ prompt (`str` or `List[str]`, *optional*):
543
+ prompt to be encoded
544
+ device: (`torch.device`):
545
+ torch device
546
+ num_images_per_prompt (`int`):
547
+ number of images that should be generated per prompt
548
+ do_classifier_free_guidance (`bool`):
549
+ whether to use classifier free guidance or not
550
+ negative_prompt (`str` or `List[str]`, *optional*):
551
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
552
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
553
+ less than `1`).
554
+ prompt_embeds (`torch.FloatTensor`, *optional*):
555
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
556
+ provided, text embeddings will be generated from `prompt` input argument.
557
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
558
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
559
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
560
+ argument.
561
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
562
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
563
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
564
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
565
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
566
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
567
+ input argument.
568
+ lora_scale (`float`, *optional*):
569
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
570
+ """
571
+ # from IPython import embed; embed(); exit()
572
+ device = device or self._execution_device
573
+
574
+ # set lora scale so that monkey patched LoRA
575
+ # function of text encoder can correctly access it
576
+ if lora_scale is not None and isinstance(self, LoraLoaderMixin):
577
+ self._lora_scale = lora_scale
578
+
579
+ if prompt is not None and isinstance(prompt, str):
580
+ batch_size = 1
581
+ elif prompt is not None and isinstance(prompt, list):
582
+ batch_size = len(prompt)
583
+ else:
584
+ batch_size = prompt_embeds.shape[0]
585
+
586
+ # Define tokenizers and text encoders
587
+ tokenizers = [self.tokenizer]
588
+ text_encoders = [self.text_encoder]
589
+
590
+ if prompt_embeds is None:
591
+ # textual inversion: procecss multi-vector tokens if necessary
592
+ prompt_embeds_list = []
593
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
594
+ if isinstance(self, TextualInversionLoaderMixin):
595
+ prompt = self.maybe_convert_prompt(prompt, tokenizer)
596
+
597
+ text_inputs = tokenizer(
598
+ prompt,
599
+ padding="max_length",
600
+ max_length=256,
601
+ truncation=True,
602
+ return_tensors="pt",
603
+ ).to('cuda')
604
+ output = text_encoder(
605
+ input_ids=text_inputs['input_ids'] ,
606
+ attention_mask=text_inputs['attention_mask'],
607
+ position_ids=text_inputs['position_ids'],
608
+ output_hidden_states=True)
609
+ prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
610
+ text_proj = output.hidden_states[-1][-1, :, :].clone()
611
+ bs_embed, seq_len, _ = prompt_embeds.shape
612
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
613
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
614
+ prompt_embeds_list.append(prompt_embeds)
615
+
616
+ prompt_embeds = prompt_embeds_list[0]
617
+
618
+ # get unconditional embeddings for classifier free guidance
619
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
620
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
621
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
622
+ negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
623
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
624
+ # negative_prompt = negative_prompt or ""
625
+ uncond_tokens: List[str]
626
+ if negative_prompt is None:
627
+ uncond_tokens = [""] * batch_size
628
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
629
+ raise TypeError(
630
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
631
+ f" {type(prompt)}."
632
+ )
633
+ elif isinstance(negative_prompt, str):
634
+ uncond_tokens = [negative_prompt]
635
+ elif batch_size != len(negative_prompt):
636
+ raise ValueError(
637
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
638
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
639
+ " the batch size of `prompt`."
640
+ )
641
+ else:
642
+ uncond_tokens = negative_prompt
643
+
644
+ negative_prompt_embeds_list = []
645
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
646
+ # textual inversion: procecss multi-vector tokens if necessary
647
+ if isinstance(self, TextualInversionLoaderMixin):
648
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)
649
+
650
+ max_length = prompt_embeds.shape[1]
651
+ uncond_input = tokenizer(
652
+ uncond_tokens,
653
+ padding="max_length",
654
+ max_length=max_length,
655
+ truncation=True,
656
+ return_tensors="pt",
657
+ ).to('cuda')
658
+ output = text_encoder(
659
+ input_ids=uncond_input['input_ids'] ,
660
+ attention_mask=uncond_input['attention_mask'],
661
+ position_ids=uncond_input['position_ids'],
662
+ output_hidden_states=True)
663
+ negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
664
+ negative_text_proj = output.hidden_states[-1][-1, :, :].clone()
665
+
666
+ if do_classifier_free_guidance:
667
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
668
+ seq_len = negative_prompt_embeds.shape[1]
669
+
670
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
671
+
672
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
673
+ negative_prompt_embeds = negative_prompt_embeds.view(
674
+ batch_size * num_images_per_prompt, seq_len, -1
675
+ )
676
+
677
+ # For classifier free guidance, we need to do two forward passes.
678
+ # Here we concatenate the unconditional and text embeddings into a single batch
679
+ # to avoid doing two forward passes
680
+
681
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
682
+
683
+ negative_prompt_embeds = negative_prompt_embeds_list[0]
684
+
685
+ bs_embed = text_proj.shape[0]
686
+ text_proj = text_proj.repeat(1, num_images_per_prompt).view(
687
+ bs_embed * num_images_per_prompt, -1
688
+ )
689
+ negative_text_proj = negative_text_proj.repeat(1, num_images_per_prompt).view(
690
+ bs_embed * num_images_per_prompt, -1
691
+ )
692
+
693
+ return prompt_embeds, negative_prompt_embeds, text_proj, negative_text_proj
694
+
695
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
696
+ def prepare_extra_step_kwargs(self, generator, eta):
697
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
698
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
699
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
700
+ # and should be between [0, 1]
701
+
702
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
703
+ extra_step_kwargs = {}
704
+ if accepts_eta:
705
+ extra_step_kwargs["eta"] = eta
706
+
707
+ # check if the scheduler accepts generator
708
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
709
+ if accepts_generator:
710
+ extra_step_kwargs["generator"] = generator
711
+ return extra_step_kwargs
712
+
713
+ def check_inputs(
714
+ self,
715
+ prompt,
716
+ prompt_2,
717
+ image,
718
+ mask_image,
719
+ height,
720
+ width,
721
+ strength,
722
+ callback_steps,
723
+ output_type,
724
+ negative_prompt=None,
725
+ negative_prompt_2=None,
726
+ prompt_embeds=None,
727
+ negative_prompt_embeds=None,
728
+ ip_adapter_image=None,
729
+ ip_adapter_image_embeds=None,
730
+ callback_on_step_end_tensor_inputs=None,
731
+ padding_mask_crop=None,
732
+ ):
733
+ if strength < 0 or strength > 1:
734
+ raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")
735
+
736
+ if height % 8 != 0 or width % 8 != 0:
737
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
738
+
739
+ if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
740
+ raise ValueError(
741
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
742
+ f" {type(callback_steps)}."
743
+ )
744
+
745
+ if callback_on_step_end_tensor_inputs is not None and not all(
746
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
747
+ ):
748
+ raise ValueError(
749
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
750
+ )
751
+
752
+ if prompt is not None and prompt_embeds is not None:
753
+ raise ValueError(
754
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
755
+ " only forward one of the two."
756
+ )
757
+ elif prompt_2 is not None and prompt_embeds is not None:
758
+ raise ValueError(
759
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
760
+ " only forward one of the two."
761
+ )
762
+ elif prompt is None and prompt_embeds is None:
763
+ raise ValueError(
764
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
765
+ )
766
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
767
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
768
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
769
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
770
+
771
+ if negative_prompt is not None and negative_prompt_embeds is not None:
772
+ raise ValueError(
773
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
774
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
775
+ )
776
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
777
+ raise ValueError(
778
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
779
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
780
+ )
781
+
782
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
783
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
784
+ raise ValueError(
785
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
786
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
787
+ f" {negative_prompt_embeds.shape}."
788
+ )
789
+ if padding_mask_crop is not None:
790
+ if not isinstance(image, PIL.Image.Image):
791
+ raise ValueError(
792
+ f"The image should be a PIL image when inpainting mask crop, but is of type" f" {type(image)}."
793
+ )
794
+ if not isinstance(mask_image, PIL.Image.Image):
795
+ raise ValueError(
796
+ f"The mask image should be a PIL image when inpainting mask crop, but is of type"
797
+ f" {type(mask_image)}."
798
+ )
799
+ if output_type != "pil":
800
+ raise ValueError(f"The output type should be PIL when inpainting mask crop, but is" f" {output_type}.")
801
+
802
+ if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
803
+ raise ValueError(
804
+ "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
805
+ )
806
+
807
+ if ip_adapter_image_embeds is not None:
808
+ if not isinstance(ip_adapter_image_embeds, list):
809
+ raise ValueError(
810
+ f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
811
+ )
812
+ elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
813
+ raise ValueError(
814
+ f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
815
+ )
816
+
817
+ def prepare_latents(
818
+ self,
819
+ batch_size,
820
+ num_channels_latents,
821
+ height,
822
+ width,
823
+ dtype,
824
+ device,
825
+ generator,
826
+ latents=None,
827
+ image=None,
828
+ timestep=None,
829
+ is_strength_max=True,
830
+ add_noise=True,
831
+ return_noise=False,
832
+ return_image_latents=False,
833
+ ):
834
+ shape = (
835
+ batch_size,
836
+ num_channels_latents,
837
+ int(height) // self.vae_scale_factor,
838
+ int(width) // self.vae_scale_factor,
839
+ )
840
+ if isinstance(generator, list) and len(generator) != batch_size:
841
+ raise ValueError(
842
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
843
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
844
+ )
845
+
846
+ if (image is None or timestep is None) and not is_strength_max:
847
+ raise ValueError(
848
+ "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise."
849
+ "However, either the image or the noise timestep has not been provided."
850
+ )
851
+
852
+ if image.shape[1] == 4:
853
+ image_latents = image.to(device=device, dtype=dtype)
854
+ image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
855
+ elif return_image_latents or (latents is None and not is_strength_max):
856
+ image = image.to(device=device, dtype=dtype)
857
+ image_latents = self._encode_vae_image(image=image, generator=generator)
858
+ image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1)
859
+
860
+ if latents is None and add_noise:
861
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
862
+ # if strength is 1. then initialise the latents to noise, else initial to image + noise
863
+ latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep)
864
+ # if pure noise then scale the initial latents by the Scheduler's init sigma
865
+ latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents
866
+ elif add_noise:
867
+ noise = latents.to(device)
868
+ latents = noise * self.scheduler.init_noise_sigma
869
+ else:
870
+ noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
871
+ latents = image_latents.to(device)
872
+
873
+ outputs = (latents,)
874
+
875
+ if return_noise:
876
+ outputs += (noise,)
877
+
878
+ if return_image_latents:
879
+ outputs += (image_latents,)
880
+
881
+ return outputs
882
+
883
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
884
+ dtype = image.dtype
885
+ if self.vae.config.force_upcast:
886
+ image = image.float()
887
+ self.vae.to(dtype=torch.float32)
888
+
889
+ if isinstance(generator, list):
890
+ image_latents = [
891
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i])
892
+ for i in range(image.shape[0])
893
+ ]
894
+ image_latents = torch.cat(image_latents, dim=0)
895
+ else:
896
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator)
897
+
898
+ if self.vae.config.force_upcast:
899
+ self.vae.to(dtype)
900
+
901
+ image_latents = image_latents.to(dtype)
902
+ image_latents = self.vae.config.scaling_factor * image_latents
903
+
904
+ return image_latents
905
+
906
+ def prepare_mask_latents(
907
+ self, mask, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
908
+ ):
909
+ # resize the mask to latents shape as we concatenate the mask to the latents
910
+ # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
911
+ # and half precision
912
+ mask = torch.nn.functional.interpolate(
913
+ mask, size=(height // self.vae_scale_factor, width // self.vae_scale_factor)
914
+ )
915
+ mask = mask.to(device=device, dtype=dtype)
916
+
917
+ # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method
918
+ if mask.shape[0] < batch_size:
919
+ if not batch_size % mask.shape[0] == 0:
920
+ raise ValueError(
921
+ "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
922
+ f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number"
923
+ " of masks that you pass is divisible by the total requested batch size."
924
+ )
925
+ mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1)
926
+
927
+ mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask
928
+
929
+ if masked_image is not None and masked_image.shape[1] == 4:
930
+ masked_image_latents = masked_image
931
+ else:
932
+ masked_image_latents = None
933
+
934
+ if masked_image is not None:
935
+ if masked_image_latents is None:
936
+ masked_image = masked_image.to(device=device, dtype=dtype)
937
+ masked_image_latents = self._encode_vae_image(masked_image, generator=generator)
938
+
939
+ if masked_image_latents.shape[0] < batch_size:
940
+ if not batch_size % masked_image_latents.shape[0] == 0:
941
+ raise ValueError(
942
+ "The passed images and the required batch size don't match. Images are supposed to be duplicated"
943
+ f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
944
+ " Make sure the number of images that you pass is divisible by the total requested batch size."
945
+ )
946
+ masked_image_latents = masked_image_latents.repeat(
947
+ batch_size // masked_image_latents.shape[0], 1, 1, 1
948
+ )
949
+
950
+ masked_image_latents = (
951
+ torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
952
+ )
953
+
954
+ # aligning device to prevent device errors when concating it with the latent model input
955
+ masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
956
+
957
+ return mask, masked_image_latents
958
+
959
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.get_timesteps
960
+ def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None):
961
+ # get the original timestep using init_timestep
962
+ if denoising_start is None:
963
+ init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
964
+ t_start = max(num_inference_steps - init_timestep, 0)
965
+ else:
966
+ t_start = 0
967
+
968
+ timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
969
+
970
+ # Strength is irrelevant if we directly request a timestep to start at;
971
+ # that is, strength is determined by the denoising_start instead.
972
+ if denoising_start is not None:
973
+ discrete_timestep_cutoff = int(
974
+ round(
975
+ self.scheduler.config.num_train_timesteps
976
+ - (denoising_start * self.scheduler.config.num_train_timesteps)
977
+ )
978
+ )
979
+
980
+ num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item()
981
+ if self.scheduler.order == 2 and num_inference_steps % 2 == 0:
982
+ # if the scheduler is a 2nd order scheduler we might have to do +1
983
+ # because `num_inference_steps` might be even given that every timestep
984
+ # (except the highest one) is duplicated. If `num_inference_steps` is even it would
985
+ # mean that we cut the timesteps in the middle of the denoising step
986
+ # (between 1st and 2nd derivative) which leads to incorrect results. By adding 1
987
+ # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler
988
+ num_inference_steps = num_inference_steps + 1
989
+
990
+ # because t_n+1 >= t_n, we slice the timesteps starting from the end
991
+ timesteps = timesteps[-num_inference_steps:]
992
+ return timesteps, num_inference_steps
993
+
994
+ return timesteps, num_inference_steps - t_start
995
+
996
+ # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline._get_add_time_ids
997
+ def _get_add_time_ids(
998
+ self,
999
+ original_size,
1000
+ crops_coords_top_left,
1001
+ target_size,
1002
+ aesthetic_score,
1003
+ negative_aesthetic_score,
1004
+ negative_original_size,
1005
+ negative_crops_coords_top_left,
1006
+ negative_target_size,
1007
+ dtype,
1008
+ text_encoder_projection_dim=None,
1009
+ ):
1010
+ if self.config.requires_aesthetics_score:
1011
+ add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,))
1012
+ add_neg_time_ids = list(
1013
+ negative_original_size + negative_crops_coords_top_left + (negative_aesthetic_score,)
1014
+ )
1015
+ else:
1016
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
1017
+ add_neg_time_ids = list(negative_original_size + crops_coords_top_left + negative_target_size)
1018
+
1019
+ passed_add_embed_dim = (
1020
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + 4096
1021
+ )
1022
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
1023
+
1024
+ if (
1025
+ expected_add_embed_dim > passed_add_embed_dim
1026
+ and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim
1027
+ ):
1028
+ raise ValueError(
1029
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model."
1030
+ )
1031
+ elif (
1032
+ expected_add_embed_dim < passed_add_embed_dim
1033
+ and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim
1034
+ ):
1035
+ raise ValueError(
1036
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model."
1037
+ )
1038
+ elif expected_add_embed_dim != passed_add_embed_dim:
1039
+ raise ValueError(
1040
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
1041
+ )
1042
+
1043
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
1044
+ add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype)
1045
+
1046
+ return add_time_ids, add_neg_time_ids
1047
+
1048
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
1049
+ def upcast_vae(self):
1050
+ dtype = self.vae.dtype
1051
+ self.vae.to(dtype=torch.float32)
1052
+ use_torch_2_0_or_xformers = isinstance(
1053
+ self.vae.decoder.mid_block.attentions[0].processor,
1054
+ (
1055
+ AttnProcessor2_0,
1056
+ XFormersAttnProcessor,
1057
+ LoRAXFormersAttnProcessor,
1058
+ LoRAAttnProcessor2_0,
1059
+ ),
1060
+ )
1061
+ # if xformers or torch_2_0 is used attention block does not need
1062
+ # to be in float32 which can save lots of memory
1063
+ if use_torch_2_0_or_xformers:
1064
+ self.vae.post_quant_conv.to(dtype)
1065
+ self.vae.decoder.conv_in.to(dtype)
1066
+ self.vae.decoder.mid_block.to(dtype)
1067
+
1068
+ # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
1069
+ def get_guidance_scale_embedding(
1070
+ self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
1071
+ ) -> torch.Tensor:
1072
+ """
1073
+ See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
1074
+
1075
+ Args:
1076
+ w (`torch.Tensor`):
1077
+ Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
1078
+ embedding_dim (`int`, *optional*, defaults to 512):
1079
+ Dimension of the embeddings to generate.
1080
+ dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
1081
+ Data type of the generated embeddings.
1082
+
1083
+ Returns:
1084
+ `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
1085
+ """
1086
+ assert len(w.shape) == 1
1087
+ w = w * 1000.0
1088
+
1089
+ half_dim = embedding_dim // 2
1090
+ emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
1091
+ emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
1092
+ emb = w.to(dtype)[:, None] * emb[None, :]
1093
+ emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
1094
+ if embedding_dim % 2 == 1: # zero pad
1095
+ emb = torch.nn.functional.pad(emb, (0, 1))
1096
+ assert emb.shape == (w.shape[0], embedding_dim)
1097
+ return emb
1098
+
1099
+ @property
1100
+ def guidance_scale(self):
1101
+ return self._guidance_scale
1102
+
1103
+ @property
1104
+ def guidance_rescale(self):
1105
+ return self._guidance_rescale
1106
+
1107
+ @property
1108
+ def clip_skip(self):
1109
+ return self._clip_skip
1110
+
1111
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
1112
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
1113
+ # corresponds to doing no classifier free guidance.
1114
+ @property
1115
+ def do_classifier_free_guidance(self):
1116
+ return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
1117
+
1118
+ @property
1119
+ def cross_attention_kwargs(self):
1120
+ return self._cross_attention_kwargs
1121
+
1122
+ @property
1123
+ def denoising_end(self):
1124
+ return self._denoising_end
1125
+
1126
+ @property
1127
+ def denoising_start(self):
1128
+ return self._denoising_start
1129
+
1130
+ @property
1131
+ def num_timesteps(self):
1132
+ return self._num_timesteps
1133
+
1134
+ @property
1135
+ def interrupt(self):
1136
+ return self._interrupt
1137
+
1138
+ @torch.no_grad()
1139
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
1140
+ def __call__(
1141
+ self,
1142
+ prompt: Union[str, List[str]] = None,
1143
+ prompt_2: Optional[Union[str, List[str]]] = None,
1144
+ image: PipelineImageInput = None,
1145
+ mask_image: PipelineImageInput = None,
1146
+ masked_image_latents: torch.Tensor = None,
1147
+ height: Optional[int] = None,
1148
+ width: Optional[int] = None,
1149
+ padding_mask_crop: Optional[int] = None,
1150
+ strength: float = 0.9999,
1151
+ num_inference_steps: int = 50,
1152
+ timesteps: List[int] = None,
1153
+ sigmas: List[float] = None,
1154
+ denoising_start: Optional[float] = None,
1155
+ denoising_end: Optional[float] = None,
1156
+ guidance_scale: float = 7.5,
1157
+ negative_prompt: Optional[Union[str, List[str]]] = None,
1158
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
1159
+ num_images_per_prompt: Optional[int] = 1,
1160
+ eta: float = 0.0,
1161
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
1162
+ latents: Optional[torch.Tensor] = None,
1163
+ prompt_embeds: Optional[torch.Tensor] = None,
1164
+ negative_prompt_embeds: Optional[torch.Tensor] = None,
1165
+ pooled_prompt_embeds: Optional[torch.Tensor] = None,
1166
+ negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
1167
+ ip_adapter_image: Optional[PipelineImageInput] = None,
1168
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
1169
+ output_type: Optional[str] = "pil",
1170
+ return_dict: bool = True,
1171
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1172
+ guidance_rescale: float = 0.0,
1173
+ original_size: Tuple[int, int] = None,
1174
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
1175
+ target_size: Tuple[int, int] = None,
1176
+ negative_original_size: Optional[Tuple[int, int]] = None,
1177
+ negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
1178
+ negative_target_size: Optional[Tuple[int, int]] = None,
1179
+ aesthetic_score: float = 6.0,
1180
+ negative_aesthetic_score: float = 2.5,
1181
+ clip_skip: Optional[int] = None,
1182
+ callback_on_step_end: Optional[
1183
+ Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
1184
+ ] = None,
1185
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
1186
+ **kwargs,
1187
+ ):
1188
+ r"""
1189
+ Function invoked when calling the pipeline for generation.
1190
+
1191
+ Args:
1192
+ prompt (`str` or `List[str]`, *optional*):
1193
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
1194
+ instead.
1195
+ prompt_2 (`str` or `List[str]`, *optional*):
1196
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
1197
+ used in both text-encoders
1198
+ image (`PIL.Image.Image`):
1199
+ `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
1200
+ be masked out with `mask_image` and repainted according to `prompt`.
1201
+ mask_image (`PIL.Image.Image`):
1202
+ `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
1203
+ repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
1204
+ to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
1205
+ instead of 3, so the expected shape would be `(B, H, W, 1)`.
1206
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
1207
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
1208
+ Anything below 512 pixels won't work well for
1209
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1210
+ and checkpoints that are not specifically fine-tuned on low resolutions.
1211
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
1212
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
1213
+ Anything below 512 pixels won't work well for
1214
+ [stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
1215
+ and checkpoints that are not specifically fine-tuned on low resolutions.
1216
+ padding_mask_crop (`int`, *optional*, defaults to `None`):
1217
+ The size of margin in the crop to be applied to the image and masking. If `None`, no crop is applied to
1218
+ image and mask_image. If `padding_mask_crop` is not `None`, it will first find a rectangular region
1219
+ with the same aspect ration of the image and contains all masked area, and then expand that area based
1220
+ on `padding_mask_crop`. The image and mask_image will then be cropped based on the expanded area before
1221
+ resizing to the original image size for inpainting. This is useful when the masked area is small while
1222
+ the image is large and contain information irrelevant for inpainting, such as background.
1223
+ strength (`float`, *optional*, defaults to 0.9999):
1224
+ Conceptually, indicates how much to transform the masked portion of the reference `image`. Must be
1225
+ between 0 and 1. `image` will be used as a starting point, adding more noise to it the larger the
1226
+ `strength`. The number of denoising steps depends on the amount of noise initially added. When
1227
+ `strength` is 1, added noise will be maximum and the denoising process will run for the full number of
1228
+ iterations specified in `num_inference_steps`. A value of 1, therefore, essentially ignores the masked
1229
+ portion of the reference `image`. Note that in the case of `denoising_start` being declared as an
1230
+ integer, the value of `strength` will be ignored.
1231
+ num_inference_steps (`int`, *optional*, defaults to 50):
1232
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
1233
+ expense of slower inference.
1234
+ timesteps (`List[int]`, *optional*):
1235
+ Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
1236
+ in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
1237
+ passed will be used. Must be in descending order.
1238
+ sigmas (`List[float]`, *optional*):
1239
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
1240
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
1241
+ will be used.
1242
+ denoising_start (`float`, *optional*):
1243
+ When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be
1244
+ bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and
1245
+ it is assumed that the passed `image` is a partly denoised image. Note that when this is specified,
1246
+ strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline
1247
+ is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image
1248
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
1249
+ denoising_end (`float`, *optional*):
1250
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
1251
+ completed before it is intentionally prematurely terminated. As a result, the returned sample will
1252
+ still retain a substantial amount of noise (ca. final 20% of timesteps still needed) and should be
1253
+ denoised by a successor pipeline that has `denoising_start` set to 0.8 so that it only denoises the
1254
+ final 20% of the scheduler. The denoising_end parameter should ideally be utilized when this pipeline
1255
+ forms a part of a "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
1256
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output).
1257
+ guidance_scale (`float`, *optional*, defaults to 7.5):
1258
+ Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
1259
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
1260
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1261
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
1262
+ usually at the expense of lower image quality.
1263
+ negative_prompt (`str` or `List[str]`, *optional*):
1264
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
1265
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
1266
+ less than `1`).
1267
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
1268
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
1269
+ `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
1270
+ prompt_embeds (`torch.Tensor`, *optional*):
1271
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
1272
+ provided, text embeddings will be generated from `prompt` input argument.
1273
+ negative_prompt_embeds (`torch.Tensor`, *optional*):
1274
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1275
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
1276
+ argument.
1277
+ pooled_prompt_embeds (`torch.Tensor`, *optional*):
1278
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
1279
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
1280
+ negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
1281
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
1282
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
1283
+ input argument.
1284
+ ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
1285
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
1286
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
1287
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
1288
+ contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
1289
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
1290
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
1291
+ The number of images to generate per prompt.
1292
+ eta (`float`, *optional*, defaults to 0.0):
1293
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
1294
+ [`schedulers.DDIMScheduler`], will be ignored for others.
1295
+ generator (`torch.Generator`, *optional*):
1296
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
1297
+ to make generation deterministic.
1298
+ latents (`torch.Tensor`, *optional*):
1299
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
1300
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1301
+ tensor will ge generated by sampling using the supplied random `generator`.
1302
+ output_type (`str`, *optional*, defaults to `"pil"`):
1303
+ The output format of the generate image. Choose between
1304
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
1305
+ return_dict (`bool`, *optional*, defaults to `True`):
1306
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
1307
+ plain tuple.
1308
+ cross_attention_kwargs (`dict`, *optional*):
1309
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
1310
+ `self.processor` in
1311
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1312
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1313
+ If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
1314
+ `original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
1315
+ explained in section 2.2 of
1316
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1317
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1318
+ `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
1319
+ `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
1320
+ `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
1321
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1322
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1323
+ For most cases, `target_size` should be set to the desired height and width of the generated image. If
1324
+ not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
1325
+ section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1326
+ negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1327
+ To negatively condition the generation process based on a specific image resolution. Part of SDXL's
1328
+ micro-conditioning as explained in section 2.2 of
1329
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1330
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1331
+ negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
1332
+ To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
1333
+ micro-conditioning as explained in section 2.2 of
1334
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1335
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1336
+ negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
1337
+ To negatively condition the generation process based on a target image resolution. It should be as same
1338
+ as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
1339
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
1340
+ information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
1341
+ aesthetic_score (`float`, *optional*, defaults to 6.0):
1342
+ Used to simulate an aesthetic score of the generated image by influencing the positive text condition.
1343
+ Part of SDXL's micro-conditioning as explained in section 2.2 of
1344
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
1345
+ negative_aesthetic_score (`float`, *optional*, defaults to 2.5):
1346
+ Part of SDXL's micro-conditioning as explained in section 2.2 of
1347
+ [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to
1348
+ simulate an aesthetic score of the generated image by influencing the negative text condition.
1349
+ clip_skip (`int`, *optional*):
1350
+ Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
1351
+ the output of the pre-final layer will be used for computing the prompt embeddings.
1352
+ callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
1353
+ A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
1354
+ each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
1355
+ DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
1356
+ list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
1357
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
1358
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
1359
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
1360
+ `._callback_tensor_inputs` attribute of your pipeline class.
1361
+
1362
+ Examples:
1363
+
1364
+ Returns:
1365
+ [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
1366
+ [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
1367
+ `tuple. `tuple. When returning a tuple, the first element is a list with the generated images.
1368
+ """
1369
+
1370
+ callback = kwargs.pop("callback", None)
1371
+ callback_steps = kwargs.pop("callback_steps", None)
1372
+
1373
+ if callback is not None:
1374
+ deprecate(
1375
+ "callback",
1376
+ "1.0.0",
1377
+ "Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
1378
+ )
1379
+ if callback_steps is not None:
1380
+ deprecate(
1381
+ "callback_steps",
1382
+ "1.0.0",
1383
+ "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
1384
+ )
1385
+
1386
+ if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
1387
+ callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
1388
+
1389
+ # 0. Default height and width to unet
1390
+ height = height or self.unet.config.sample_size * self.vae_scale_factor
1391
+ width = width or self.unet.config.sample_size * self.vae_scale_factor
1392
+
1393
+ # 1. Check inputs
1394
+ self.check_inputs(
1395
+ prompt,
1396
+ prompt_2,
1397
+ image,
1398
+ mask_image,
1399
+ height,
1400
+ width,
1401
+ strength,
1402
+ callback_steps,
1403
+ output_type,
1404
+ negative_prompt,
1405
+ negative_prompt_2,
1406
+ prompt_embeds,
1407
+ negative_prompt_embeds,
1408
+ ip_adapter_image,
1409
+ ip_adapter_image_embeds,
1410
+ callback_on_step_end_tensor_inputs,
1411
+ padding_mask_crop,
1412
+ )
1413
+
1414
+ self._guidance_scale = guidance_scale
1415
+ self._guidance_rescale = guidance_rescale
1416
+ self._clip_skip = clip_skip
1417
+ self._cross_attention_kwargs = cross_attention_kwargs
1418
+ self._denoising_end = denoising_end
1419
+ self._denoising_start = denoising_start
1420
+ self._interrupt = False
1421
+
1422
+ # 2. Define call parameters
1423
+ if prompt is not None and isinstance(prompt, str):
1424
+ batch_size = 1
1425
+ elif prompt is not None and isinstance(prompt, list):
1426
+ batch_size = len(prompt)
1427
+ else:
1428
+ batch_size = prompt_embeds.shape[0]
1429
+
1430
+ device = self._execution_device
1431
+
1432
+ # 3. Encode input prompt
1433
+ text_encoder_lora_scale = (
1434
+ self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
1435
+ )
1436
+
1437
+ (
1438
+ prompt_embeds,
1439
+ negative_prompt_embeds,
1440
+ pooled_prompt_embeds,
1441
+ negative_pooled_prompt_embeds,
1442
+ ) = self.encode_prompt(
1443
+ prompt=prompt,
1444
+ device=device,
1445
+ num_images_per_prompt=num_images_per_prompt,
1446
+ do_classifier_free_guidance=self.do_classifier_free_guidance,
1447
+ negative_prompt=negative_prompt,
1448
+ prompt_embeds=prompt_embeds,
1449
+ negative_prompt_embeds=negative_prompt_embeds,
1450
+ pooled_prompt_embeds=pooled_prompt_embeds,
1451
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
1452
+ lora_scale=text_encoder_lora_scale,
1453
+ )
1454
+
1455
+ # 4. set timesteps
1456
+ def denoising_value_valid(dnv):
1457
+ return isinstance(dnv, float) and 0 < dnv < 1
1458
+
1459
+ timesteps, num_inference_steps = retrieve_timesteps(
1460
+ self.scheduler, num_inference_steps, device, timesteps, sigmas
1461
+ )
1462
+ timesteps, num_inference_steps = self.get_timesteps(
1463
+ num_inference_steps,
1464
+ strength,
1465
+ device,
1466
+ denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
1467
+ )
1468
+ # check that number of inference steps is not < 1 - as this doesn't make sense
1469
+ if num_inference_steps < 1:
1470
+ raise ValueError(
1471
+ f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
1472
+ f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
1473
+ )
1474
+ # at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
1475
+ latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
1476
+ # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
1477
+ is_strength_max = strength == 1.0
1478
+
1479
+ # 5. Preprocess mask and image
1480
+ if padding_mask_crop is not None:
1481
+ crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
1482
+ resize_mode = "fill"
1483
+ else:
1484
+ crops_coords = None
1485
+ resize_mode = "default"
1486
+
1487
+ original_image = image
1488
+ init_image = self.image_processor.preprocess(
1489
+ image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
1490
+ )
1491
+ init_image = init_image.to(dtype=torch.float32)
1492
+
1493
+ mask = self.mask_processor.preprocess(
1494
+ mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
1495
+ )
1496
+
1497
+ if masked_image_latents is not None:
1498
+ masked_image = masked_image_latents
1499
+ elif init_image.shape[1] == 4:
1500
+ # if images are in latent space, we can't mask it
1501
+ masked_image = None
1502
+ else:
1503
+ masked_image = init_image * (mask < 0.5)
1504
+
1505
+ # 6. Prepare latent variables
1506
+ num_channels_latents = self.vae.config.latent_channels
1507
+ num_channels_unet = self.unet.config.in_channels
1508
+ return_image_latents = num_channels_unet == 4
1509
+
1510
+ add_noise = True if self.denoising_start is None else False
1511
+ latents_outputs = self.prepare_latents(
1512
+ batch_size * num_images_per_prompt,
1513
+ num_channels_latents,
1514
+ height,
1515
+ width,
1516
+ prompt_embeds.dtype,
1517
+ device,
1518
+ generator,
1519
+ latents,
1520
+ image=init_image,
1521
+ timestep=latent_timestep,
1522
+ is_strength_max=is_strength_max,
1523
+ add_noise=add_noise,
1524
+ return_noise=True,
1525
+ return_image_latents=return_image_latents,
1526
+ )
1527
+
1528
+ if return_image_latents:
1529
+ latents, noise, image_latents = latents_outputs
1530
+ else:
1531
+ latents, noise = latents_outputs
1532
+
1533
+ # 7. Prepare mask latent variables
1534
+ mask, masked_image_latents = self.prepare_mask_latents(
1535
+ mask,
1536
+ masked_image,
1537
+ batch_size * num_images_per_prompt,
1538
+ height,
1539
+ width,
1540
+ prompt_embeds.dtype,
1541
+ device,
1542
+ generator,
1543
+ self.do_classifier_free_guidance,
1544
+ )
1545
+
1546
+ # 8. Check that sizes of mask, masked image and latents match
1547
+ if num_channels_unet == 9:
1548
+ # default case for runwayml/stable-diffusion-inpainting
1549
+ num_channels_mask = mask.shape[1]
1550
+ num_channels_masked_image = masked_image_latents.shape[1]
1551
+ if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
1552
+ raise ValueError(
1553
+ f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
1554
+ f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
1555
+ f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
1556
+ f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
1557
+ " `pipeline.unet` or your `mask_image` or `image` input."
1558
+ )
1559
+ elif num_channels_unet != 4:
1560
+ raise ValueError(
1561
+ f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
1562
+ )
1563
+ # 8.1 Prepare extra step kwargs.
1564
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
1565
+
1566
+ # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
1567
+ height, width = latents.shape[-2:]
1568
+ height = height * self.vae_scale_factor
1569
+ width = width * self.vae_scale_factor
1570
+
1571
+ original_size = original_size or (height, width)
1572
+ target_size = target_size or (height, width)
1573
+
1574
+ # 10. Prepare added time ids & embeddings
1575
+ if negative_original_size is None:
1576
+ negative_original_size = original_size
1577
+ if negative_target_size is None:
1578
+ negative_target_size = target_size
1579
+
1580
+ add_text_embeds = pooled_prompt_embeds
1581
+ if self.text_encoder_2 is None:
1582
+ text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
1583
+ else:
1584
+ text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
1585
+
1586
+ add_time_ids, add_neg_time_ids = self._get_add_time_ids(
1587
+ original_size,
1588
+ crops_coords_top_left,
1589
+ target_size,
1590
+ aesthetic_score,
1591
+ negative_aesthetic_score,
1592
+ negative_original_size,
1593
+ negative_crops_coords_top_left,
1594
+ negative_target_size,
1595
+ dtype=prompt_embeds.dtype,
1596
+ text_encoder_projection_dim=text_encoder_projection_dim,
1597
+ )
1598
+ add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
1599
+
1600
+ if self.do_classifier_free_guidance:
1601
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
1602
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
1603
+ add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
1604
+ add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
1605
+
1606
+ prompt_embeds = prompt_embeds.to(device)
1607
+ add_text_embeds = add_text_embeds.to(device)
1608
+ add_time_ids = add_time_ids.to(device)
1609
+
1610
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1611
+ image_embeds = self.prepare_ip_adapter_image_embeds(
1612
+ ip_adapter_image,
1613
+ ip_adapter_image_embeds,
1614
+ device,
1615
+ batch_size * num_images_per_prompt,
1616
+ self.do_classifier_free_guidance,
1617
+ )
1618
+
1619
+
1620
+ # 11. Denoising loop
1621
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1622
+
1623
+ if (
1624
+ self.denoising_end is not None
1625
+ and self.denoising_start is not None
1626
+ and denoising_value_valid(self.denoising_end)
1627
+ and denoising_value_valid(self.denoising_start)
1628
+ and self.denoising_start >= self.denoising_end
1629
+ ):
1630
+ raise ValueError(
1631
+ f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
1632
+ + f" {self.denoising_end} when using type float."
1633
+ )
1634
+ elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
1635
+ discrete_timestep_cutoff = int(
1636
+ round(
1637
+ self.scheduler.config.num_train_timesteps
1638
+ - (self.denoising_end * self.scheduler.config.num_train_timesteps)
1639
+ )
1640
+ )
1641
+ num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
1642
+ timesteps = timesteps[:num_inference_steps]
1643
+
1644
+ # 11.1 Optionally get Guidance Scale Embedding
1645
+ timestep_cond = None
1646
+ if self.unet.config.time_cond_proj_dim is not None:
1647
+ guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
1648
+ timestep_cond = self.get_guidance_scale_embedding(
1649
+ guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
1650
+ ).to(device=device, dtype=latents.dtype)
1651
+
1652
+ self._num_timesteps = len(timesteps)
1653
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1654
+ for i, t in enumerate(timesteps):
1655
+ if self.interrupt:
1656
+ continue
1657
+ # expand the latents if we are doing classifier free guidance
1658
+ latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
1659
+
1660
+ # concat latents, mask, masked_image_latents in the channel dimension
1661
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
1662
+
1663
+ if num_channels_unet == 9:
1664
+ latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
1665
+
1666
+ # predict the noise residual
1667
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
1668
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1669
+ added_cond_kwargs["image_embeds"] = image_embeds
1670
+ noise_pred = self.unet(
1671
+ latent_model_input,
1672
+ t,
1673
+ encoder_hidden_states=prompt_embeds,
1674
+ timestep_cond=timestep_cond,
1675
+ cross_attention_kwargs=self.cross_attention_kwargs,
1676
+ added_cond_kwargs=added_cond_kwargs,
1677
+ return_dict=False,
1678
+ )[0]
1679
+
1680
+ # perform guidance
1681
+ if self.do_classifier_free_guidance:
1682
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
1683
+ noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
1684
+
1685
+ if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
1686
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
1687
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
1688
+
1689
+ # compute the previous noisy sample x_t -> x_t-1
1690
+ latents_dtype = latents.dtype
1691
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
1692
+ if latents.dtype != latents_dtype:
1693
+ if torch.backends.mps.is_available():
1694
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1695
+ latents = latents.to(latents_dtype)
1696
+
1697
+ if num_channels_unet == 4:
1698
+ init_latents_proper = image_latents
1699
+ if self.do_classifier_free_guidance:
1700
+ init_mask, _ = mask.chunk(2)
1701
+ else:
1702
+ init_mask = mask
1703
+
1704
+ if i < len(timesteps) - 1:
1705
+ noise_timestep = timesteps[i + 1]
1706
+ init_latents_proper = self.scheduler.add_noise(
1707
+ init_latents_proper, noise, torch.tensor([noise_timestep])
1708
+ )
1709
+
1710
+ latents = (1 - init_mask) * init_latents_proper + init_mask * latents
1711
+
1712
+ if callback_on_step_end is not None:
1713
+ callback_kwargs = {}
1714
+ for k in callback_on_step_end_tensor_inputs:
1715
+ callback_kwargs[k] = locals()[k]
1716
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1717
+
1718
+ latents = callback_outputs.pop("latents", latents)
1719
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1720
+ negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
1721
+ add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
1722
+ negative_pooled_prompt_embeds = callback_outputs.pop(
1723
+ "negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
1724
+ )
1725
+ add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
1726
+ add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
1727
+ mask = callback_outputs.pop("mask", mask)
1728
+ masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
1729
+
1730
+ # call the callback, if provided
1731
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1732
+ progress_bar.update()
1733
+ if callback is not None and i % callback_steps == 0:
1734
+ step_idx = i // getattr(self.scheduler, "order", 1)
1735
+ callback(step_idx, t, latents)
1736
+
1737
+ if XLA_AVAILABLE:
1738
+ xm.mark_step()
1739
+
1740
+ if not output_type == "latent":
1741
+ # make sure the VAE is in float32 mode, as it overflows in float16
1742
+ needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
1743
+
1744
+ if needs_upcasting:
1745
+ self.upcast_vae()
1746
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
1747
+ elif latents.dtype != self.vae.dtype:
1748
+ if torch.backends.mps.is_available():
1749
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1750
+ self.vae = self.vae.to(latents.dtype)
1751
+
1752
+ # unscale/denormalize the latents
1753
+ # denormalize with the mean and std if available and not None
1754
+ has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
1755
+ has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
1756
+ if has_latents_mean and has_latents_std:
1757
+ latents_mean = (
1758
+ torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
1759
+ )
1760
+ latents_std = (
1761
+ torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
1762
+ )
1763
+ latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
1764
+ else:
1765
+ latents = latents / self.vae.config.scaling_factor
1766
+
1767
+ image = self.vae.decode(latents, return_dict=False)[0]
1768
+
1769
+ # cast back to fp16 if needed
1770
+ if needs_upcasting:
1771
+ self.vae.to(dtype=torch.float16)
1772
+ else:
1773
+ return StableDiffusionXLPipelineOutput(images=latents)
1774
+
1775
+ # apply watermark if available
1776
+ if self.watermark is not None:
1777
+ image = self.watermark.apply_watermark(image)
1778
+
1779
+ image = self.image_processor.postprocess(image, output_type=output_type)
1780
+
1781
+ if padding_mask_crop is not None:
1782
+ image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
1783
+
1784
+ # Offload all models
1785
+ self.maybe_free_model_hooks()
1786
+
1787
+ if not return_dict:
1788
+ return (image,)
1789
+
1790
+ return StableDiffusionXLPipelineOutput(images=image)
kolors/pipelines/pipeline_stable_diffusion_xl_chatglm_256_ipadapter.py ADDED
@@ -0,0 +1,948 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import sys
15
+ import os
16
+ sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
17
+ from kolors.models.modeling_chatglm import ChatGLMModel
18
+ from kolors.models.tokenization_chatglm import ChatGLMTokenizer
19
+ import inspect
20
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
21
+ import torch
22
+ from transformers import (
23
+ CLIPImageProcessor,
24
+ CLIPTextModel,
25
+ CLIPTextModelWithProjection,
26
+ CLIPTokenizer,
27
+ CLIPVisionModelWithProjection,
28
+ )
29
+ from transformers import XLMRobertaModel, ChineseCLIPTextModel
30
+
31
+ from diffusers.image_processor import VaeImageProcessor,PipelineImageInput
32
+ from diffusers.loaders import (
33
+ FromSingleFileMixin,
34
+ IPAdapterMixin,
35
+ LoraLoaderMixin,
36
+ TextualInversionLoaderMixin
37
+ )
38
+ from diffusers.models import AutoencoderKL, UNet2DConditionModel,ImageProjection
39
+ from diffusers.models.attention_processor import (
40
+ AttnProcessor2_0,
41
+ LoRAAttnProcessor2_0,
42
+ LoRAXFormersAttnProcessor,
43
+ XFormersAttnProcessor,
44
+ )
45
+ from diffusers.schedulers import KarrasDiffusionSchedulers
46
+ from diffusers.utils import (
47
+ is_accelerate_available,
48
+ is_accelerate_version,
49
+ logging,
50
+ replace_example_docstring,
51
+ )
52
+ try:
53
+ from diffusers.utils import randn_tensor
54
+ except:
55
+ from diffusers.utils.torch_utils import randn_tensor
56
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
57
+ from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
58
+
59
+
60
+
61
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
62
+
63
+ EXAMPLE_DOC_STRING = """
64
+ Examples:
65
+ ```py
66
+ >>> import torch
67
+ >>> from diffusers import StableDiffusionXLPipeline
68
+
69
+ >>> pipe = StableDiffusionXLPipeline.from_pretrained(
70
+ ... "stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16
71
+ ... )
72
+ >>> pipe = pipe.to("cuda")
73
+
74
+ >>> prompt = "a photo of an astronaut riding a horse on mars"
75
+ >>> image = pipe(prompt).images[0]
76
+ ```
77
+ """
78
+
79
+
80
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
81
+ def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
82
+ """
83
+ Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
84
+ Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
85
+ """
86
+ std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
87
+ std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
88
+ # rescale the results from guidance (fixes overexposure)
89
+ noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
90
+ # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
91
+ noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
92
+ return noise_cfg
93
+
94
+
95
+ class StableDiffusionXLPipeline(DiffusionPipeline, FromSingleFileMixin, LoraLoaderMixin, IPAdapterMixin,):
96
+ r"""
97
+ Pipeline for text-to-image generation using Stable Diffusion XL.
98
+
99
+ This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
100
+ library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
101
+
102
+ In addition the pipeline inherits the following loading methods:
103
+ - *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
104
+ - *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
105
+ - *Ckpt*: [`loaders.FromSingleFileMixin.from_single_file`]
106
+
107
+ as well as the following saving methods:
108
+ - *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`]
109
+
110
+ Args:
111
+ vae ([`AutoencoderKL`]):
112
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
113
+ text_encoder ([`CLIPTextModel`]):
114
+ Frozen text-encoder. Stable Diffusion XL uses the text portion of
115
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
116
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
117
+
118
+ tokenizer (`CLIPTokenizer`):
119
+ Tokenizer of class
120
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
121
+
122
+ unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
123
+ scheduler ([`SchedulerMixin`]):
124
+ A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
125
+ [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
126
+ """
127
+
128
+ def __init__(
129
+ self,
130
+ vae: AutoencoderKL,
131
+ text_encoder: ChatGLMModel,
132
+ tokenizer: ChatGLMTokenizer,
133
+ unet: UNet2DConditionModel,
134
+ scheduler: KarrasDiffusionSchedulers,
135
+ image_encoder: CLIPVisionModelWithProjection = None,
136
+ feature_extractor: CLIPImageProcessor = None,
137
+ force_zeros_for_empty_prompt: bool = True,
138
+ ):
139
+ super().__init__()
140
+
141
+ self.register_modules(
142
+ vae=vae,
143
+ text_encoder=text_encoder,
144
+ tokenizer=tokenizer,
145
+ unet=unet,
146
+ scheduler=scheduler,
147
+ image_encoder=image_encoder,
148
+ feature_extractor=feature_extractor,
149
+ )
150
+ self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
151
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
152
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
153
+ self.default_sample_size = self.unet.config.sample_size
154
+
155
+ # self.watermark = StableDiffusionXLWatermarker()
156
+
157
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_slicing
158
+ def enable_vae_slicing(self):
159
+ r"""
160
+ Enable sliced VAE decoding.
161
+
162
+ When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
163
+ steps. This is useful to save some memory and allow larger batch sizes.
164
+ """
165
+ self.vae.enable_slicing()
166
+
167
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_slicing
168
+ def disable_vae_slicing(self):
169
+ r"""
170
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
171
+ computing decoding in one step.
172
+ """
173
+ self.vae.disable_slicing()
174
+
175
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_vae_tiling
176
+ def enable_vae_tiling(self):
177
+ r"""
178
+ Enable tiled VAE decoding.
179
+
180
+ When this option is enabled, the VAE will split the input tensor into tiles to compute decoding and encoding in
181
+ several steps. This is useful to save a large amount of memory and to allow the processing of larger images.
182
+ """
183
+ self.vae.enable_tiling()
184
+
185
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.disable_vae_tiling
186
+ def disable_vae_tiling(self):
187
+ r"""
188
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to
189
+ computing decoding in one step.
190
+ """
191
+ self.vae.disable_tiling()
192
+
193
+ def enable_sequential_cpu_offload(self, gpu_id=0):
194
+ r"""
195
+ Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
196
+ text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
197
+ `torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
198
+ Note that offloading happens on a submodule basis. Memory savings are higher than with
199
+ `enable_model_cpu_offload`, but performance is lower.
200
+ """
201
+ if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
202
+ from accelerate import cpu_offload
203
+ else:
204
+ raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
205
+
206
+ device = torch.device(f"cuda:{gpu_id}")
207
+
208
+ if self.device.type != "cpu":
209
+ self.to("cpu", silence_dtype_warnings=True)
210
+ torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
211
+
212
+ for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
213
+ cpu_offload(cpu_offloaded_model, device)
214
+
215
+ def enable_model_cpu_offload(self, gpu_id=0):
216
+ r"""
217
+ Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
218
+ to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
219
+ method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
220
+ `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
221
+ """
222
+ if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
223
+ from accelerate import cpu_offload_with_hook
224
+ else:
225
+ raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
226
+
227
+ device = torch.device(f"cuda:{gpu_id}")
228
+
229
+ if self.device.type != "cpu":
230
+ self.to("cpu", silence_dtype_warnings=True)
231
+ torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
232
+
233
+ model_sequence = (
234
+ [self.text_encoder, self.image_encoder]
235
+ )
236
+ model_sequence.extend([self.unet, self.vae])
237
+
238
+ hook = None
239
+ for cpu_offloaded_model in model_sequence:
240
+ _, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
241
+
242
+ # We'll offload the last model manually.
243
+ self.final_offload_hook = hook
244
+
245
+ @property
246
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
247
+ def _execution_device(self):
248
+ r"""
249
+ Returns the device on which the pipeline's models will be executed. After calling
250
+ `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
251
+ hooks.
252
+ """
253
+ if not hasattr(self.unet, "_hf_hook"):
254
+ return self.device
255
+ for module in self.unet.modules():
256
+ if (
257
+ hasattr(module, "_hf_hook")
258
+ and hasattr(module._hf_hook, "execution_device")
259
+ and module._hf_hook.execution_device is not None
260
+ ):
261
+ return torch.device(module._hf_hook.execution_device)
262
+ return self.device
263
+
264
+ def encode_prompt(
265
+ self,
266
+ prompt,
267
+ device: Optional[torch.device] = None,
268
+ num_images_per_prompt: int = 1,
269
+ do_classifier_free_guidance: bool = True,
270
+ negative_prompt=None,
271
+ prompt_embeds: Optional[torch.FloatTensor] = None,
272
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
273
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
274
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
275
+ lora_scale: Optional[float] = None,
276
+ ):
277
+ r"""
278
+ Encodes the prompt into text encoder hidden states.
279
+
280
+ Args:
281
+ prompt (`str` or `List[str]`, *optional*):
282
+ prompt to be encoded
283
+ device: (`torch.device`):
284
+ torch device
285
+ num_images_per_prompt (`int`):
286
+ number of images that should be generated per prompt
287
+ do_classifier_free_guidance (`bool`):
288
+ whether to use classifier free guidance or not
289
+ negative_prompt (`str` or `List[str]`, *optional*):
290
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
291
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
292
+ less than `1`).
293
+ prompt_embeds (`torch.FloatTensor`, *optional*):
294
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
295
+ provided, text embeddings will be generated from `prompt` input argument.
296
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
297
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
298
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
299
+ argument.
300
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
301
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
302
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
303
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
304
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
305
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
306
+ input argument.
307
+ lora_scale (`float`, *optional*):
308
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
309
+ """
310
+ # from IPython import embed; embed(); exit()
311
+ device = device or self._execution_device
312
+
313
+ # set lora scale so that monkey patched LoRA
314
+ # function of text encoder can correctly access it
315
+ if lora_scale is not None and isinstance(self, LoraLoaderMixin):
316
+ self._lora_scale = lora_scale
317
+
318
+ if prompt is not None and isinstance(prompt, str):
319
+ batch_size = 1
320
+ elif prompt is not None and isinstance(prompt, list):
321
+ batch_size = len(prompt)
322
+ else:
323
+ batch_size = prompt_embeds.shape[0]
324
+
325
+ # Define tokenizers and text encoders
326
+ tokenizers = [self.tokenizer]
327
+ text_encoders = [self.text_encoder]
328
+
329
+ if prompt_embeds is None:
330
+ # textual inversion: procecss multi-vector tokens if necessary
331
+ prompt_embeds_list = []
332
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
333
+ if isinstance(self, TextualInversionLoaderMixin):
334
+ prompt = self.maybe_convert_prompt(prompt, tokenizer)
335
+
336
+ text_inputs = tokenizer(
337
+ prompt,
338
+ padding="max_length",
339
+ max_length=256,
340
+ truncation=True,
341
+ return_tensors="pt",
342
+ ).to('cuda')
343
+ output = text_encoder(
344
+ input_ids=text_inputs['input_ids'] ,
345
+ attention_mask=text_inputs['attention_mask'],
346
+ position_ids=text_inputs['position_ids'],
347
+ output_hidden_states=True)
348
+ prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
349
+ pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
350
+ bs_embed, seq_len, _ = prompt_embeds.shape
351
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
352
+ prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
353
+
354
+ prompt_embeds_list.append(prompt_embeds)
355
+
356
+ # prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
357
+ prompt_embeds = prompt_embeds_list[0]
358
+
359
+ # get unconditional embeddings for classifier free guidance
360
+ zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
361
+ if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
362
+ negative_prompt_embeds = torch.zeros_like(prompt_embeds)
363
+ negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
364
+ elif do_classifier_free_guidance and negative_prompt_embeds is None:
365
+ # negative_prompt = negative_prompt or ""
366
+ uncond_tokens: List[str]
367
+ if negative_prompt is None:
368
+ uncond_tokens = [""] * batch_size
369
+ elif prompt is not None and type(prompt) is not type(negative_prompt):
370
+ raise TypeError(
371
+ f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
372
+ f" {type(prompt)}."
373
+ )
374
+ elif isinstance(negative_prompt, str):
375
+ uncond_tokens = [negative_prompt]
376
+ elif batch_size != len(negative_prompt):
377
+ raise ValueError(
378
+ f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
379
+ f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
380
+ " the batch size of `prompt`."
381
+ )
382
+ else:
383
+ uncond_tokens = negative_prompt
384
+
385
+ negative_prompt_embeds_list = []
386
+ for tokenizer, text_encoder in zip(tokenizers, text_encoders):
387
+ # textual inversion: procecss multi-vector tokens if necessary
388
+ if isinstance(self, TextualInversionLoaderMixin):
389
+ uncond_tokens = self.maybe_convert_prompt(uncond_tokens, tokenizer)
390
+
391
+ max_length = prompt_embeds.shape[1]
392
+ uncond_input = tokenizer(
393
+ uncond_tokens,
394
+ padding="max_length",
395
+ max_length=max_length,
396
+ truncation=True,
397
+ return_tensors="pt",
398
+ ).to('cuda')
399
+ output = text_encoder(
400
+ input_ids=uncond_input['input_ids'] ,
401
+ attention_mask=uncond_input['attention_mask'],
402
+ position_ids=uncond_input['position_ids'],
403
+ output_hidden_states=True)
404
+ negative_prompt_embeds = output.hidden_states[-2].permute(1, 0, 2).clone()
405
+ negative_pooled_prompt_embeds = output.hidden_states[-1][-1, :, :].clone() # [batch_size, 4096]
406
+
407
+ if do_classifier_free_guidance:
408
+ # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
409
+ seq_len = negative_prompt_embeds.shape[1]
410
+
411
+ negative_prompt_embeds = negative_prompt_embeds.to(dtype=text_encoder.dtype, device=device)
412
+
413
+ negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
414
+ negative_prompt_embeds = negative_prompt_embeds.view(
415
+ batch_size * num_images_per_prompt, seq_len, -1
416
+ )
417
+
418
+ # For classifier free guidance, we need to do two forward passes.
419
+ # Here we concatenate the unconditional and text embeddings into a single batch
420
+ # to avoid doing two forward passes
421
+
422
+ negative_prompt_embeds_list.append(negative_prompt_embeds)
423
+
424
+ # negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
425
+ negative_prompt_embeds = negative_prompt_embeds_list[0]
426
+
427
+ bs_embed = pooled_prompt_embeds.shape[0]
428
+ pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
429
+ bs_embed * num_images_per_prompt, -1
430
+ )
431
+ if do_classifier_free_guidance:
432
+ negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
433
+ bs_embed * num_images_per_prompt, -1
434
+ )
435
+
436
+ return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
437
+
438
+
439
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
440
+ def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
441
+ dtype = next(self.image_encoder.parameters()).dtype
442
+
443
+ if not isinstance(image, torch.Tensor):
444
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
445
+
446
+ image = image.to(device=device, dtype=dtype)
447
+ if output_hidden_states:
448
+ image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
449
+ image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
450
+ uncond_image_enc_hidden_states = self.image_encoder(
451
+ torch.zeros_like(image), output_hidden_states=True
452
+ ).hidden_states[-2]
453
+ uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
454
+ num_images_per_prompt, dim=0
455
+ )
456
+ return image_enc_hidden_states, uncond_image_enc_hidden_states
457
+ else:
458
+ image_embeds = self.image_encoder(image).image_embeds
459
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
460
+ uncond_image_embeds = torch.zeros_like(image_embeds)
461
+
462
+ return image_embeds, uncond_image_embeds
463
+
464
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
465
+ def prepare_ip_adapter_image_embeds(
466
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
467
+ ):
468
+ image_embeds = []
469
+ if do_classifier_free_guidance:
470
+ negative_image_embeds = []
471
+ if ip_adapter_image_embeds is None:
472
+ if not isinstance(ip_adapter_image, list):
473
+ ip_adapter_image = [ip_adapter_image]
474
+
475
+ if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
476
+ raise ValueError(
477
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
478
+ )
479
+
480
+ for single_ip_adapter_image, image_proj_layer in zip(
481
+ ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
482
+ ):
483
+ output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
484
+ single_image_embeds, single_negative_image_embeds = self.encode_image(
485
+ single_ip_adapter_image, device, 1, output_hidden_state
486
+ )
487
+
488
+ image_embeds.append(single_image_embeds[None, :])
489
+ if do_classifier_free_guidance:
490
+ negative_image_embeds.append(single_negative_image_embeds[None, :])
491
+ else:
492
+ for single_image_embeds in ip_adapter_image_embeds:
493
+ if do_classifier_free_guidance:
494
+ single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
495
+ negative_image_embeds.append(single_negative_image_embeds)
496
+ image_embeds.append(single_image_embeds)
497
+
498
+ ip_adapter_image_embeds = []
499
+ for i, single_image_embeds in enumerate(image_embeds):
500
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
501
+ if do_classifier_free_guidance:
502
+ single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
503
+ single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
504
+
505
+ single_image_embeds = single_image_embeds.to(device=device)
506
+ ip_adapter_image_embeds.append(single_image_embeds)
507
+
508
+ return ip_adapter_image_embeds
509
+
510
+
511
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
512
+ def prepare_extra_step_kwargs(self, generator, eta):
513
+ # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
514
+ # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
515
+ # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
516
+ # and should be between [0, 1]
517
+
518
+ accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
519
+ extra_step_kwargs = {}
520
+ if accepts_eta:
521
+ extra_step_kwargs["eta"] = eta
522
+
523
+ # check if the scheduler accepts generator
524
+ accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
525
+ if accepts_generator:
526
+ extra_step_kwargs["generator"] = generator
527
+ return extra_step_kwargs
528
+
529
+ def check_inputs(
530
+ self,
531
+ prompt,
532
+ height,
533
+ width,
534
+ callback_steps,
535
+ negative_prompt=None,
536
+ prompt_embeds=None,
537
+ negative_prompt_embeds=None,
538
+ pooled_prompt_embeds=None,
539
+ negative_pooled_prompt_embeds=None,
540
+ ):
541
+ if height % 8 != 0 or width % 8 != 0:
542
+ raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
543
+
544
+ if (callback_steps is None) or (
545
+ callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
546
+ ):
547
+ raise ValueError(
548
+ f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
549
+ f" {type(callback_steps)}."
550
+ )
551
+
552
+ if prompt is not None and prompt_embeds is not None:
553
+ raise ValueError(
554
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
555
+ " only forward one of the two."
556
+ )
557
+ elif prompt is None and prompt_embeds is None:
558
+ raise ValueError(
559
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
560
+ )
561
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
562
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
563
+
564
+ if negative_prompt is not None and negative_prompt_embeds is not None:
565
+ raise ValueError(
566
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
567
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
568
+ )
569
+
570
+ if prompt_embeds is not None and negative_prompt_embeds is not None:
571
+ if prompt_embeds.shape != negative_prompt_embeds.shape:
572
+ raise ValueError(
573
+ "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
574
+ f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
575
+ f" {negative_prompt_embeds.shape}."
576
+ )
577
+
578
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
579
+ raise ValueError(
580
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
581
+ )
582
+
583
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
584
+ raise ValueError(
585
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
586
+ )
587
+
588
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
589
+ def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
590
+ shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
591
+ if isinstance(generator, list) and len(generator) != batch_size:
592
+ raise ValueError(
593
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
594
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
595
+ )
596
+
597
+ if latents is None:
598
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
599
+ else:
600
+ latents = latents.to(device)
601
+
602
+ # scale the initial noise by the standard deviation required by the scheduler
603
+ latents = latents * self.scheduler.init_noise_sigma
604
+ return latents
605
+
606
+ def _get_add_time_ids(self, original_size, crops_coords_top_left, target_size, dtype):
607
+ add_time_ids = list(original_size + crops_coords_top_left + target_size)
608
+
609
+ passed_add_embed_dim = (
610
+ self.unet.config.addition_time_embed_dim * len(add_time_ids) + 4096
611
+ )
612
+ expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
613
+
614
+ if expected_add_embed_dim != passed_add_embed_dim:
615
+ raise ValueError(
616
+ f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
617
+ )
618
+
619
+ add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
620
+ return add_time_ids
621
+
622
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae
623
+ def upcast_vae(self):
624
+ dtype = self.vae.dtype
625
+ self.vae.to(dtype=torch.float32)
626
+ use_torch_2_0_or_xformers = isinstance(
627
+ self.vae.decoder.mid_block.attentions[0].processor,
628
+ (
629
+ AttnProcessor2_0,
630
+ XFormersAttnProcessor,
631
+ LoRAXFormersAttnProcessor,
632
+ LoRAAttnProcessor2_0,
633
+ ),
634
+ )
635
+ # if xformers or torch_2_0 is used attention block does not need
636
+ # to be in float32 which can save lots of memory
637
+ if use_torch_2_0_or_xformers:
638
+ self.vae.post_quant_conv.to(dtype)
639
+ self.vae.decoder.conv_in.to(dtype)
640
+ self.vae.decoder.mid_block.to(dtype)
641
+
642
+ @torch.no_grad()
643
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
644
+ def __call__(
645
+ self,
646
+ prompt: Union[str, List[str]] = None,
647
+ height: Optional[int] = None,
648
+ width: Optional[int] = None,
649
+ num_inference_steps: int = 50,
650
+ denoising_end: Optional[float] = None,
651
+ guidance_scale: float = 5.0,
652
+ negative_prompt: Optional[Union[str, List[str]]] = None,
653
+ num_images_per_prompt: Optional[int] = 1,
654
+ eta: float = 0.0,
655
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
656
+ latents: Optional[torch.FloatTensor] = None,
657
+ prompt_embeds: Optional[torch.FloatTensor] = None,
658
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
659
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
660
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
661
+
662
+ ip_adapter_image: Optional[PipelineImageInput] = None,
663
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
664
+
665
+ output_type: Optional[str] = "pil",
666
+ return_dict: bool = True,
667
+ callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
668
+ callback_steps: int = 1,
669
+ cross_attention_kwargs: Optional[Dict[str, Any]] = None,
670
+ guidance_rescale: float = 0.0,
671
+ original_size: Optional[Tuple[int, int]] = None,
672
+ crops_coords_top_left: Tuple[int, int] = (0, 0),
673
+ target_size: Optional[Tuple[int, int]] = None,
674
+ use_dynamic_threshold: Optional[bool] = False,
675
+ ):
676
+ r"""
677
+ Function invoked when calling the pipeline for generation.
678
+
679
+ Args:
680
+ prompt (`str` or `List[str]`, *optional*):
681
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
682
+ instead.
683
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
684
+ The height in pixels of the generated image.
685
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
686
+ The width in pixels of the generated image.
687
+ num_inference_steps (`int`, *optional*, defaults to 50):
688
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
689
+ expense of slower inference.
690
+ denoising_end (`float`, *optional*):
691
+ When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
692
+ completed before it is intentionally prematurely terminated. For instance, if denoising_end is set to
693
+ 0.7 and `num_inference_steps` is fixed at 50, the process will execute only 35 (i.e., 0.7 * 50)
694
+ Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
695
+ Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
696
+ guidance_scale (`float`, *optional*, defaults to 7.5):
697
+ `guidance_scale` is defined as `w` of equation 2. of [Imagen
698
+ Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
699
+ 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
700
+ negative_prompt (`str` or `List[str]`, *optional*):
701
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
702
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
703
+ less than `1`).
704
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
705
+ The number of images to generate per prompt.
706
+ eta (`float`, *optional*, defaults to 0.0):
707
+ Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
708
+ [`schedulers.DDIMScheduler`], will be ignored for others.
709
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
710
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
711
+ to make generation deterministic.
712
+ latents (`torch.FloatTensor`, *optional*):
713
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
714
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
715
+ tensor will ge generated by sampling using the supplied random `generator`.
716
+ prompt_embeds (`torch.FloatTensor`, *optional*):
717
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
718
+ provided, text embeddings will be generated from `prompt` input argument.
719
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
720
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
721
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
722
+ argument.
723
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
724
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
725
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
726
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
727
+ output_type (`str`, *optional*, defaults to `"pil"`):
728
+ The output format of the generate image. Choose between
729
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
730
+ return_dict (`bool`, *optional*, defaults to `True`):
731
+ Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] instead of a
732
+ callback (`Callable`, *optional*):
733
+ A function that will be called every `callback_steps` steps during inference. The function will be
734
+ callback_steps (`int`, *optional*, defaults to 1):
735
+ The frequency at which the `callback` function will be called. If not specified, the callback will be
736
+ called at every step.
737
+ cross_attention_kwargs (`dict`, *optional*):
738
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
739
+ `self.processor` in
740
+ [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
741
+ guidance_rescale (`float`, *optional*, defaults to 0.7):
742
+ Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
743
+ Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
744
+ [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
745
+ Guidance rescale factor should fix overexposure when using zero terminal SNR.
746
+ original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
747
+ TODO
748
+ crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
749
+ TODO
750
+ target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
751
+ TODO
752
+
753
+ Examples:
754
+
755
+ Returns:
756
+ [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] or `tuple`:
757
+ [`~pipelines.stable_diffusion.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
758
+ `tuple. When returning a tuple, the first element is a list with the generated images, and the second
759
+ element is a list of `bool`s denoting whether the corresponding generated image likely represents
760
+ "not-safe-for-work" (nsfw) content, according to the `safety_checker`.
761
+ """
762
+ # 0. Default height and width to unet
763
+ height = height or self.default_sample_size * self.vae_scale_factor
764
+ width = width or self.default_sample_size * self.vae_scale_factor
765
+
766
+ original_size = original_size or (height, width)
767
+ target_size = target_size or (height, width)
768
+
769
+ # 1. Check inputs. Raise error if not correct
770
+ self.check_inputs(
771
+ prompt,
772
+ height,
773
+ width,
774
+ callback_steps,
775
+ negative_prompt,
776
+ prompt_embeds,
777
+ negative_prompt_embeds,
778
+ pooled_prompt_embeds,
779
+ negative_pooled_prompt_embeds,
780
+ )
781
+
782
+ # 2. Define call parameters
783
+ if prompt is not None and isinstance(prompt, str):
784
+ batch_size = 1
785
+ elif prompt is not None and isinstance(prompt, list):
786
+ batch_size = len(prompt)
787
+ else:
788
+ batch_size = prompt_embeds.shape[0]
789
+
790
+ device = self._execution_device
791
+
792
+ # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
793
+ # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
794
+ # corresponds to doing no classifier free guidance.
795
+ do_classifier_free_guidance = guidance_scale > 1.0
796
+
797
+ # 3. Encode input prompt
798
+ text_encoder_lora_scale = (
799
+ cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
800
+ )
801
+ (
802
+ prompt_embeds,
803
+ negative_prompt_embeds,
804
+ pooled_prompt_embeds,
805
+ negative_pooled_prompt_embeds,
806
+ ) = self.encode_prompt(
807
+ prompt,
808
+ device,
809
+ num_images_per_prompt,
810
+ do_classifier_free_guidance,
811
+ negative_prompt,
812
+ prompt_embeds=prompt_embeds,
813
+ negative_prompt_embeds=negative_prompt_embeds,
814
+ pooled_prompt_embeds=pooled_prompt_embeds,
815
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
816
+ lora_scale=text_encoder_lora_scale,
817
+ )
818
+
819
+ # 4. Prepare timesteps
820
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
821
+
822
+ timesteps = self.scheduler.timesteps
823
+
824
+ # 5. Prepare latent variables
825
+ num_channels_latents = self.unet.config.in_channels
826
+ latents = self.prepare_latents(
827
+ batch_size * num_images_per_prompt,
828
+ num_channels_latents,
829
+ height,
830
+ width,
831
+ prompt_embeds.dtype,
832
+ device,
833
+ generator,
834
+ latents,
835
+ )
836
+
837
+ # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
838
+ extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
839
+
840
+ # 7. Prepare added time ids & embeddings
841
+ add_text_embeds = pooled_prompt_embeds
842
+ add_time_ids = self._get_add_time_ids(
843
+ original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
844
+ )
845
+
846
+ if do_classifier_free_guidance:
847
+ prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
848
+ add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
849
+ add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0)
850
+
851
+ prompt_embeds = prompt_embeds.to(device)
852
+ add_text_embeds = add_text_embeds.to(device)
853
+ add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
854
+
855
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
856
+ image_embeds = self.prepare_ip_adapter_image_embeds(
857
+ ip_adapter_image,
858
+ ip_adapter_image_embeds,
859
+ device,
860
+ batch_size * num_images_per_prompt,
861
+ do_classifier_free_guidance,
862
+ )
863
+
864
+ # 8. Denoising loop
865
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
866
+
867
+ # 7.1 Apply denoising_end
868
+ if denoising_end is not None:
869
+ num_inference_steps = int(round(denoising_end * num_inference_steps))
870
+ timesteps = timesteps[: num_warmup_steps + self.scheduler.order * num_inference_steps]
871
+
872
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
873
+ for i, t in enumerate(timesteps):
874
+ # expand the latents if we are doing classifier free guidance
875
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
876
+
877
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
878
+
879
+ # predict the noise residual
880
+ added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
881
+
882
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
883
+ added_cond_kwargs["image_embeds"] = image_embeds
884
+
885
+ # import pdb; pdb.set_trace()
886
+
887
+ noise_pred = self.unet(
888
+ latent_model_input,
889
+ t,
890
+ encoder_hidden_states=prompt_embeds,
891
+ cross_attention_kwargs=cross_attention_kwargs,
892
+ added_cond_kwargs=added_cond_kwargs,
893
+ return_dict=False,
894
+ )[0]
895
+
896
+ # perform guidance
897
+ if do_classifier_free_guidance:
898
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
899
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
900
+ if use_dynamic_threshold:
901
+ DynamicThresh = DynThresh(maxSteps=num_inference_steps, experiment_mode=0)
902
+ noise_pred = DynamicThresh.dynthresh(noise_pred_text,
903
+ noise_pred_uncond,
904
+ guidance_scale,
905
+ None)
906
+
907
+ if do_classifier_free_guidance and guidance_rescale > 0.0:
908
+ # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
909
+ noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
910
+
911
+ # compute the previous noisy sample x_t -> x_t-1
912
+ latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
913
+
914
+ # call the callback, if provided
915
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
916
+ progress_bar.update()
917
+ if callback is not None and i % callback_steps == 0:
918
+ callback(i, t, latents)
919
+
920
+ # make sureo the VAE is in float32 mode, as it overflows in float16
921
+ # torch.cuda.empty_cache()
922
+ if self.vae.dtype == torch.float16 and self.vae.config.force_upcast:
923
+ self.upcast_vae()
924
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
925
+
926
+
927
+ if not output_type == "latent":
928
+ latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
929
+ image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
930
+ else:
931
+ image = latents
932
+ return StableDiffusionXLPipelineOutput(images=image)
933
+
934
+ # image = self.watermark.apply_watermark(image)
935
+ image = self.image_processor.postprocess(image, output_type=output_type)
936
+
937
+ # Offload last model to CPU
938
+ if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
939
+ self.final_offload_hook.offload()
940
+
941
+ if not return_dict:
942
+ return (image,)
943
+
944
+ return StableDiffusionXLPipelineOutput(images=image)
945
+
946
+
947
+ if __name__ == "__main__":
948
+ pass