import os from typing import List from chainlit.types import AskFileResponse from aimakerspace.text_utils import CharacterTextSplitter, TextFileLoader from aimakerspace.openai_utils.prompts import ( UserRolePrompt, SystemRolePrompt, AssistantRolePrompt, ) from aimakerspace.openai_utils.embedding import EmbeddingModel from aimakerspace.vectordatabase import VectorDatabase from aimakerspace.openai_utils.chatmodel import ChatOpenAI import chainlit as cl system_template = """\ Use the following context to answer a users question. If you cannot find the answer in the context, say you don't know the answer.""" system_role_prompt = SystemRolePrompt(system_template) user_prompt_template = """\ Context: {context} Question: {question} """ user_role_prompt = UserRolePrompt(user_prompt_template) class RetrievalAugmentedQAPipeline: def __init__(self, llm: ChatOpenAI(), vector_db_retriever: VectorDatabase) -> None: self.llm = llm self.vector_db_retriever = vector_db_retriever async def arun_pipeline(self, user_query: str): context_list = self.vector_db_retriever.search_by_text(user_query, k=4) context_prompt = "" for context in context_list: #context_prompt += context[0] + "\n" #add Source info to the context context_prompt += f"{context[0]} (Source: {context[2].get('filename')}, Chunk: {context[2].get('chunk_index')})\n" formatted_system_prompt = system_role_prompt.create_message() formatted_user_prompt = user_role_prompt.create_message(question=user_query, context=context_prompt) async def generate_response(): async for chunk in self.llm.astream([formatted_system_prompt, formatted_user_prompt]): yield chunk return {"response": generate_response(), "context": context_list} text_splitter = CharacterTextSplitter() def process_text_file(file: AskFileResponse): import tempfile with tempfile.NamedTemporaryFile(mode="w", delete=False, suffix=".txt") as temp_file: temp_file_path = temp_file.name with open(temp_file_path, "wb") as f: f.write(file.content) text_loader = TextFileLoader(temp_file_path) #documents = text_loader.load_documents() #YL edit 1 line below documents_with_metadata = text_loader.load_documents_with_metadata() #texts = text_splitter.split_texts(documents) #YL edit 1 line below texts_with_matadata = text_splitter.split_texts_with_metadata(documents_with_metadata) return texts_with_matadata @cl.on_chat_start async def on_chat_start(): files = None # Wait for the user to upload a file while files == None: files = await cl.AskFileMessage( content="Please upload a Text File file to begin!", accept=["text/plain"], max_size_mb=2, timeout=180, ).send() file = files[0] msg = cl.Message( content=f"Processing `{file.name}`...", disable_human_feedback=True ) await msg.send() # load the file #texts = process_text_file(file) #YL added 1 line below texts_with_matadata = process_text_file(file) #print(f"Processing {len(texts)} text chunks") #YL added 1 line below print(f"Processing {len(texts_with_matadata)} text chunks") # Create a dict vector store vector_db = VectorDatabase() #vector_db = await vector_db.abuild_from_list(texts) #YL added 3 lines below vector_db = await vector_db.abuild_from_list( [text["text"] for text in texts_with_matadata], [text["metadata"] for text in texts_with_matadata]) chat_openai = ChatOpenAI() # Create a chain retrieval_augmented_qa_pipeline = RetrievalAugmentedQAPipeline( vector_db_retriever=vector_db, llm=chat_openai ) # Let the user know that the system is ready msg.content = f"Processing `{file.name}` done. You can now ask questions!" await msg.update() cl.user_session.set("chain", retrieval_augmented_qa_pipeline) @cl.on_message async def main(message): chain = cl.user_session.get("chain") msg = cl.Message(content="") result = await chain.arun_pipeline(message.content) async for stream_resp in result["response"]: await msg.stream_token(stream_resp) #YL added someline as below to append the Source and Chunk info context_info = "\n\nSources:\n" for context in result["context"]: source_info = f"Source: {context[2].get('filename')}, Chunk: {context[2].get('chunk_index')}" context_info += f"{source_info}\n" msg.content += context_info await msg.send()