Spaces:
Runtime error
Runtime error
import streamlit as st | |
from streamlit_tags import st_tags, st_tags_sidebar | |
from keytotext import pipeline | |
from PIL import Image | |
from tabulate import tabulate | |
import json | |
from sentence_transformers import SentenceTransformer, CrossEncoder, util | |
import gzip | |
import os | |
import torch | |
import pickle | |
import random | |
import numpy as np | |
import pandas as pd | |
############ | |
## Main page | |
############ | |
st.write("# Demonstration for Etsy Query Expansion(Etsy-QE)") | |
st.markdown("***Idea is to build a model which will take query as inputs and generate expansion information as outputs.***") | |
image = Image.open('etsy-shop-LLC.png') | |
st.image(image) | |
st.sidebar.write("# Top-N Selection") | |
maxtags_sidebar = st.sidebar.slider('Number of query allowed?', 1, 20, 1, key='ehikwegrjifbwreuk') | |
#user_query = st_tags( | |
# label='# Enter Query:', | |
# text='Press enter to add more', | |
# value=['Mother'], | |
# suggestions=['gift', 'nike', 'wool'], | |
# maxtags=maxtags_sidebar, | |
# key="aljnf") | |
user_query = st.text_input("Enter a query for the generated text: e.g., gift, home decoration ...") | |
# Add selectbox in streamlit | |
option1 = st.sidebar.selectbox( | |
'Which transformers model would you like to be selected?', | |
('multi-qa-MiniLM-L6-cos-v1','null','null')) | |
option2 = st.sidebar.selectbox( | |
'Which corss-encoder model would you like to be selected?', | |
('cross-encoder/ms-marco-MiniLM-L-6-v2','null','null')) | |
st.sidebar.success("Load Successfully!") | |
#if not torch.cuda.is_available(): | |
# print("Warning: No GPU found. Please add GPU to your notebook") | |
#We use the Bi-Encoder to encode all passages, so that we can use it with sematic search | |
bi_encoder = SentenceTransformer(option1,device='cpu') | |
bi_encoder.max_seq_length = 256 #Truncate long passages to 256 tokens | |
top_k = 32 #Number of passages we want to retrieve with the bi-encoder | |
#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality | |
cross_encoder = CrossEncoder(option2, device='cpu') | |
passages = [] | |
# load pre-train embeedings files | |
print("Load pre-computed embeddings from disc") | |
# embedding_cache_path = 'embeddings.pt' | |
# corpus_embeddings = torch.load(embedding_cache_path) | |
# with open('sentences.json', 'r') as file: | |
# passages = json.load(file) | |
embedding_cache_path = 'etsy-embeddings-cpu.pkl' | |
# embedding_cache_path = 'etsy-embeddings-cpu-3parts-0530.pkl' | |
with open(embedding_cache_path, "rb") as fIn: | |
cache_data = pickle.load(fIn) | |
passages = cache_data['sentences'] | |
corpus_embeddings = cache_data['embeddings'] | |
from sklearn.feature_extraction import _stop_words | |
import string | |
from tqdm.autonotebook import tqdm | |
import numpy as np | |
import re | |
import yake | |
language = "en" | |
max_ngram_size = 3 | |
deduplication_threshold = 0.9 | |
deduplication_algo = 'seqm' | |
windowSize = 3 | |
numOfKeywords = 3 | |
custom_kw_extractor = yake.KeywordExtractor(lan=language, n=max_ngram_size, dedupLim=deduplication_threshold, dedupFunc=deduplication_algo, windowsSize=windowSize, top=numOfKeywords, features=None) | |
# load query GMS information | |
with open('query_gms_mock_2M.json', 'r') as file: | |
query_gms_dict = json.load(file) | |
def word_len(s): | |
return len([i for i in s.split(' ') if i]) | |
# This function will search all wikipedia articles for passages that | |
# answer the query | |
DEFAULT_SCORE = -100.0 | |
def clean_string(input_string): | |
string_sub1 = re.sub("([^\u0030-\u0039\u0041-\u007a])", ' ', input_string) | |
string_sub2 = re.sub("\x20\x20", "\n", string_sub1) | |
string_strip = string_sub2.strip().lower() | |
output_string = [] | |
if len(string_strip) > 20: | |
keywords = custom_kw_extractor.extract_keywords(string_strip) | |
for tokens in keywords: | |
string_clean = tokens[0] | |
if word_len(string_clean) > 1: | |
output_string.append(string_clean) | |
else: | |
output_string.append(string_strip) | |
return output_string | |
# add gms column | |
def add_gms_score_for_candidates(candidates): | |
candidates_final = {} | |
for key, value in candidates.items(): | |
gms_value = query_gms_dict.get(key, 0) | |
candidates_final[key] = {'gms': gms_value, 'bi_score': value['bi_score'], 'cross_score': value['cross_score']} | |
return candidates_final | |
def generate_query_expansion_candidates(query): | |
print("Input query:", query) | |
expanded_query_set = {} | |
##### Sematic Search ##### | |
# Encode the query using the bi-encoder and find potentially relevant passages | |
query_embedding = bi_encoder.encode(query, convert_to_tensor=True) | |
# query_embedding = query_embedding.cuda() | |
# Get the hits for the first query | |
encoder_hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=top_k)[0] | |
# For all retrieved passages, add the cross_encoder scores | |
cross_inp = [[query, passages[hit['corpus_id']]] for hit in encoder_hits] | |
cross_scores = cross_encoder.predict(cross_inp) | |
for idx in range(len(cross_scores)): | |
encoder_hits[idx]['cross_score'] = cross_scores[idx] | |
candidates = {} | |
for hit in encoder_hits: | |
corpus_id = hit['corpus_id'] | |
candidates[corpus_id] = {'bi_score': hit['score'], 'cross_score': hit['cross_score']} | |
final_candidates = {} | |
for key, value in candidates.items(): | |
input_string = passages[key].replace("\n", "") | |
string_set = set(clean_string(input_string)) | |
for item in string_set: | |
final_candidates[item] = value | |
# remove the query itself from candidates | |
if query in final_candidates: | |
del final_candidates[query] | |
# add gms column | |
for query_candidate in final_candidates: | |
value = final_candidates[query_candidate] | |
value['gms'] = query_gms_dict.get(query_candidate, 0) | |
final_candidates[query_candidate] = value | |
# Total Results | |
# st.write("E-Commerce Query Expansion Candidates: \n") | |
return final_candidates | |
def re_rank_candidates(query, candidates, method): | |
if method == 'bi_encoder': | |
# Filter and sort by bi_score | |
filtered_sorted_result = sorted( | |
[(k, v) for k, v in candidates.items() if v['bi_score'] > DEFAULT_SCORE], | |
key=lambda x: x[1]['bi_score'], | |
reverse=True | |
) | |
elif method == 'cross_encoder': | |
# Filter and sort by cross_score | |
filtered_sorted_result = sorted( | |
[(k, v) for k, v in candidates.items() if v['cross_score'] > DEFAULT_SCORE], | |
key=lambda x: x[1]['cross_score'], | |
reverse=True | |
) | |
elif method == 'gms': | |
filtered_sorted_by_encoder = sorted( | |
[(k, v) for k, v in candidates.items() if (v['cross_score'] > DEFAULT_SCORE) & (v['bi_score'] > DEFAULT_SCORE)], | |
key=lambda x: x[1]['cross_score'] + x[1]['bi_score'], | |
reverse=True | |
) | |
# first sort by cross_score + bi_score | |
filtered_sorted_result = sorted(filtered_sorted_by_encoder, key=lambda x: x[1]['gms'], reverse=True | |
) | |
else: | |
# use default method cross_score + bi_score | |
# Filter and sort by cross_score + bi_score | |
filtered_sorted_result = sorted( | |
[(k, v) for k, v in candidates.items() if (v['cross_score'] > DEFAULT_SCORE) & (v['bi_score'] > DEFAULT_SCORE)], | |
key=lambda x: x[1]['cross_score'] + x[1]['bi_score'], | |
reverse=True | |
) | |
return filtered_sorted_result | |
if st.button('Generated Expansion'): | |
st.write("E-Commerce Query Expansion Candidates: \n") | |
col1, col2 = st.columns(2) | |
candidates = generate_query_expansion_candidates(query = user_query) | |
with col1: | |
st.subheader('Raw Candidates:') | |
candidates_rerank = re_rank_candidates(user_query, candidates, method='cross_encoder')[:maxtags_sidebar] | |
result = [item[0] for item in candidates_rerank] | |
st.write(result) | |
with col2: | |
st.subheader('Rerank By GMS:') | |
candidates_gms = add_gms_score_for_candidates(candidates) | |
candidates_rerank = re_rank_candidates(user_query, candidates_gms, method='gms')[:maxtags_sidebar] | |
data_dicts = [{'query': item[0], 'GMS Value': item[1]['gms']} for item in candidates_rerank] | |
df = pd.DataFrame.from_dict(data_dicts) | |
st.write(df) |