import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange, reduce def avg_pool_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D average pooling module. """ if dims == 1: return nn.AvgPool1d(*args, **kwargs) elif dims == 2: return nn.AvgPool2d(*args, **kwargs) elif dims == 3: return nn.AvgPool3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") class Downsample(nn.Module): """ A downsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims stride = 2 if dims != 3 else (1, 2, 2) if use_conv: self.op = conv_nd( dims, self.channels, self.out_channels, 3, stride=stride, padding=padding, ) else: assert self.channels == self.out_channels self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) def forward(self, x): assert x.shape[1] == self.channels return self.op(x) class ResnetBlock(nn.Module): def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True): super().__init__() ps = ksize // 2 if in_c != out_c or sk == False: self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps) else: # print('n_in') self.in_conv = None self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1) self.act = nn.ReLU() self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps) self.bn1 = nn.BatchNorm2d(out_c) self.bn2 = nn.BatchNorm2d(out_c) if sk == False: # self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps) # edit by zhouxiawang self.skep = nn.Conv2d(out_c, out_c, ksize, 1, ps) else: self.skep = None self.down = down if self.down == True: self.down_opt = Downsample(in_c, use_conv=use_conv) def forward(self, x): if self.down == True: x = self.down_opt(x) if self.in_conv is not None: # edit x = self.in_conv(x) h = self.bn1(x) h = self.act(h) h = self.block1(h) h = self.bn2(h) h = self.act(h) h = self.block2(h) if self.skep is not None: return h + self.skep(x) else: return h + x class VAESpatialEmulator(nn.Module): def __init__(self, kernel_size=(8, 8)): super().__init__() self.kernel_size = kernel_size def forward(self, x): """ x: torch.Tensor: shape [B C T H W] """ Hp, Wp = self.kernel_size H, W = x.shape[-2], x.shape[-1] valid_h = H - H % Hp valid_w = W - W % Wp x = x[..., :valid_h, :valid_w] x = rearrange( x, "B C T (Nh Hp) (Nw Wp) -> B (Hp Wp C) T Nh Nw", Hp=Hp, Wp=Wp, ) return x class VAETemporalEmulator(nn.Module): def __init__(self, micro_frame_size, kernel_size=4): super().__init__() self.micro_frame_size = micro_frame_size self.kernel_size = kernel_size def forward(self, x_z): """ x_z: torch.Tensor: shape [B C T H W] """ z_list = [] for i in range(0, x_z.shape[2], self.micro_frame_size): x_z_bs = x_z[:, :, i : i + self.micro_frame_size] z_list.append(x_z_bs[:, :, 0:1]) x_z_bs = x_z_bs[:, :, 1:] t_valid = x_z_bs.shape[2] - x_z_bs.shape[2] % self.kernel_size x_z_bs = x_z_bs[:, :, :t_valid] x_z_bs = reduce(x_z_bs, "B C (T n) H W -> B C T H W", n=self.kernel_size, reduction="mean") z_list.append(x_z_bs) z = torch.cat(z_list, dim=2) return z class TrajExtractor(nn.Module): def __init__( self, vae_downsize=(4, 8, 8), patch_size=2, channels=[320, 640, 1280, 1280], nums_rb=3, cin=2, ksize=3, sk=False, use_conv=True, ): super(TrajExtractor, self).__init__() self.vae_downsize = vae_downsize # self.vae_spatial_emulator = VAESpatialEmulator(kernel_size=vae_downsize[-2:]) self.downsize_patchify = nn.PixelUnshuffle(patch_size) self.patch_size = (1, patch_size, patch_size) self.channels = channels self.nums_rb = nums_rb self.body = [] for i in range(len(channels)): for j in range(nums_rb): if (i != 0) and (j == 0): self.body.append( ResnetBlock( channels[i - 1], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv, ) ) else: self.body.append( ResnetBlock( channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv, ) ) self.body = nn.ModuleList(self.body) cin_ = cin * patch_size**2 self.conv_in = nn.Conv2d(cin_, channels[0], 3, 1, 1) # Initialize weights def conv_init(module): if isinstance(module, (nn.Conv2d, nn.Conv1d)): nn.init.kaiming_normal_(module.weight, nonlinearity="relu") if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(conv_init) def forward(self, x): """ x: torch.Tensor: shape [B C T H W] """ # downsize T, H, W = x.shape[-3:] if W % self.patch_size[2] != 0: x = F.pad(x, (0, self.patch_size[2] - W % self.patch_size[2])) if H % self.patch_size[1] != 0: x = F.pad(x, (0, 0, 0, self.patch_size[1] - H % self.patch_size[1])) if T % self.patch_size[0] != 0: x = F.pad( x, (0, 0, 0, 0, 0, self.patch_size[0] - T % self.patch_size[0]), ) x = rearrange(x, "B C T H W -> (B T) C H W") x = self.downsize_patchify(x) # extract features features = [] x = self.conv_in(x) for i in range(len(self.channels)): for j in range(self.nums_rb): idx = i * self.nums_rb + j x = self.body[idx](x) features.append(x) return features class FloatGroupNorm(nn.GroupNorm): def forward(self, x): return super().forward(x.to(self.bias.dtype)).type(x.dtype) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module class MGF(nn.Module): def __init__(self, flow_in_channel=128, out_channels=1152): super().__init__() self.out_channels = out_channels self.flow_gamma_spatial = nn.Conv2d(flow_in_channel, self.out_channels // 4, 3, padding=1) self.flow_gamma_temporal = zero_module( nn.Conv1d( self.out_channels // 4, self.out_channels, kernel_size=3, stride=1, padding=1, padding_mode="replicate", ) ) self.flow_beta_spatial = nn.Conv2d(flow_in_channel, self.out_channels // 4, 3, padding=1) self.flow_beta_temporal = zero_module( nn.Conv1d( self.out_channels // 4, self.out_channels, kernel_size=3, stride=1, padding=1, padding_mode="replicate", ) ) self.flow_cond_norm = FloatGroupNorm(32, self.out_channels) def forward(self, h, flow, T): if flow is not None: gamma_flow = self.flow_gamma_spatial(flow) beta_flow = self.flow_beta_spatial(flow) _, _, hh, wh = beta_flow.shape if gamma_flow.shape[0] == 1: # Check if batch size is 1 gamma_flow = rearrange(gamma_flow, "b c h w -> b c (h w)") beta_flow = rearrange(beta_flow, "b c h w -> b c (h w)") gamma_flow = self.flow_gamma_temporal(gamma_flow) beta_flow = self.flow_beta_temporal(beta_flow) gamma_flow = rearrange(gamma_flow, "b c (h w) -> b c h w", h=hh, w=wh) beta_flow = rearrange(beta_flow, "b c (h w) -> b c h w", h=hh, w=wh) else: gamma_flow = rearrange(gamma_flow, "(b f) c h w -> (b h w) c f", f=T) beta_flow = rearrange(beta_flow, "(b f) c h w -> (b h w) c f", f=T) gamma_flow = self.flow_gamma_temporal(gamma_flow) beta_flow = self.flow_beta_temporal(beta_flow) gamma_flow = rearrange(gamma_flow, "(b h w) c f -> (b f) c h w", h=hh, w=wh) beta_flow = rearrange(beta_flow, "(b h w) c f -> (b f) c h w", h=hh, w=wh) h = h + self.flow_cond_norm(h) * gamma_flow + beta_flow return h