Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import cv2 | |
import torch | |
# Note that the coordinates passed to the model must not exceed 256. | |
# xy range 256 | |
def pdf2(sigma_matrix, grid): | |
"""Calculate PDF of the bivariate Gaussian distribution. | |
Args: | |
sigma_matrix (ndarray): with the shape (2, 2) | |
grid (ndarray): generated by :func:`mesh_grid`, | |
with the shape (K, K, 2), K is the kernel size. | |
Returns: | |
kernel (ndarrray): un-normalized kernel. | |
""" | |
inverse_sigma = np.linalg.inv(sigma_matrix) | |
kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2)) | |
return kernel | |
def mesh_grid(kernel_size): | |
"""Generate the mesh grid, centering at zero. | |
Args: | |
kernel_size (int): | |
Returns: | |
xy (ndarray): with the shape (kernel_size, kernel_size, 2) | |
xx (ndarray): with the shape (kernel_size, kernel_size) | |
yy (ndarray): with the shape (kernel_size, kernel_size) | |
""" | |
ax = np.arange(-kernel_size // 2 + 1.0, kernel_size // 2 + 1.0) | |
xx, yy = np.meshgrid(ax, ax) | |
xy = np.hstack( | |
( | |
xx.reshape((kernel_size * kernel_size, 1)), | |
yy.reshape(kernel_size * kernel_size, 1), | |
) | |
).reshape(kernel_size, kernel_size, 2) | |
return xy, xx, yy | |
def sigma_matrix2(sig_x, sig_y, theta): | |
"""Calculate the rotated sigma matrix (two dimensional matrix). | |
Args: | |
sig_x (float): | |
sig_y (float): | |
theta (float): Radian measurement. | |
Returns: | |
ndarray: Rotated sigma matrix. | |
""" | |
d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]]) | |
u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) | |
return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T)) | |
def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True): | |
"""Generate a bivariate isotropic or anisotropic Gaussian kernel. | |
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored. | |
Args: | |
kernel_size (int): | |
sig_x (float): | |
sig_y (float): | |
theta (float): Radian measurement. | |
grid (ndarray, optional): generated by :func:`mesh_grid`, | |
with the shape (K, K, 2), K is the kernel size. Default: None | |
isotropic (bool): | |
Returns: | |
kernel (ndarray): normalized kernel. | |
""" | |
if grid is None: | |
grid, _, _ = mesh_grid(kernel_size) | |
if isotropic: | |
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]]) | |
else: | |
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) | |
kernel = pdf2(sigma_matrix, grid) | |
kernel = kernel / np.sum(kernel) | |
return kernel | |
size = 99 | |
sigma = 10 | |
blur_kernel = bivariate_Gaussian(size, sigma, sigma, 0, grid=None, isotropic=True) | |
blur_kernel = blur_kernel / blur_kernel[size // 2, size // 2] | |
canvas_width, canvas_height = 256, 256 | |
def get_flow(points, optical_flow, video_len): | |
for i in range(video_len - 1): | |
p = points[i] | |
p1 = points[i + 1] | |
optical_flow[i + 1, p[1], p[0], 0] = p1[0] - p[0] | |
optical_flow[i + 1, p[1], p[0], 1] = p1[1] - p[1] | |
return optical_flow | |
def process_points(points, frames=49): | |
defualt_points = [[128, 128]] * frames | |
if len(points) < 2: | |
return defualt_points | |
elif len(points) >= frames: | |
skip = len(points) // frames | |
return points[::skip][: frames - 1] + points[-1:] | |
else: | |
insert_num = frames - len(points) | |
insert_num_dict = {} | |
interval = len(points) - 1 | |
n = insert_num // interval | |
m = insert_num % interval | |
for i in range(interval): | |
insert_num_dict[i] = n | |
for i in range(m): | |
insert_num_dict[i] += 1 | |
res = [] | |
for i in range(interval): | |
insert_points = [] | |
x0, y0 = points[i] | |
x1, y1 = points[i + 1] | |
delta_x = x1 - x0 | |
delta_y = y1 - y0 | |
for j in range(insert_num_dict[i]): | |
x = x0 + (j + 1) / (insert_num_dict[i] + 1) * delta_x | |
y = y0 + (j + 1) / (insert_num_dict[i] + 1) * delta_y | |
insert_points.append([int(x), int(y)]) | |
res += points[i : i + 1] + insert_points | |
res += points[-1:] | |
return res | |
def read_points_from_list(traj_list, video_len=16, reverse=False): | |
points = [] | |
for point in traj_list: | |
if isinstance(point, str): | |
x, y = point.strip().split(",") | |
else: | |
x, y = point[0], point[1] | |
points.append((int(x), int(y))) | |
if reverse: | |
points = points[::-1] | |
if len(points) > video_len: | |
skip = len(points) // video_len | |
points = points[::skip] | |
points = points[:video_len] | |
return points | |
def read_points_from_file(file, video_len=16, reverse=False): | |
with open(file, "r") as f: | |
lines = f.readlines() | |
points = [] | |
for line in lines: | |
x, y = line.strip().split(",") | |
points.append((int(x), int(y))) | |
if reverse: | |
points = points[::-1] | |
if len(points) > video_len: | |
skip = len(points) // video_len | |
points = points[::skip] | |
points = points[:video_len] | |
return points | |
def process_traj(trajs_list, num_frames, video_size, device="cpu"): | |
if trajs_list and trajs_list[0] and (not isinstance(trajs_list[0][0], (list, tuple))): | |
tmp = trajs_list | |
trajs_list = [tmp] | |
optical_flow = np.zeros((num_frames, video_size[0], video_size[1], 2), dtype=np.float32) | |
processed_points = [] | |
for traj_list in trajs_list: | |
points = read_points_from_list(traj_list, video_len=num_frames) | |
xy_range = 256 | |
h, w = video_size | |
points = process_points(points, num_frames) | |
points = [[int(w * x / xy_range), int(h * y / xy_range)] for x, y in points] | |
optical_flow = get_flow(points, optical_flow, video_len=num_frames) | |
processed_points.append(points) | |
print(f"received {len(trajs_list)} trajectorie(s)") | |
for i in range(1, num_frames): | |
optical_flow[i] = cv2.filter2D(optical_flow[i], -1, blur_kernel) | |
optical_flow = torch.tensor(optical_flow).to(device) | |
return optical_flow, processed_points | |
def add_provided_traj(traj_name): | |
global traj_list | |
traj_list = PROVIDED_TRAJS[traj_name] | |
traj_str = [f"{traj}" for traj in traj_list] | |
return ", ".join(traj_str) | |
def scale_traj_list_to_256(traj_list, canvas_width, canvas_height): | |
scale_x = 256 / canvas_width | |
scale_y = 256 / canvas_height | |
scaled_traj_list = [[int(x * scale_x), int(y * scale_y)] for x, y in traj_list] | |
return scaled_traj_list |