Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import json | |
import folder_paths | |
import comfy.model_management as mm | |
from typing import Union | |
def patched_write_atomic( | |
path_: str, | |
content: Union[str, bytes], | |
make_dirs: bool = False, | |
encode_utf_8: bool = False, | |
) -> None: | |
# Write into temporary file first to avoid conflicts between threads | |
# Avoid using a named temporary file, as those have restricted permissions | |
from pathlib import Path | |
import os | |
import shutil | |
import threading | |
assert isinstance( | |
content, (str, bytes) | |
), "Only strings and byte arrays can be saved in the cache" | |
path = Path(path_) | |
if make_dirs: | |
path.parent.mkdir(parents=True, exist_ok=True) | |
tmp_path = path.parent / f".{os.getpid()}.{threading.get_ident()}.tmp" | |
write_mode = "w" if isinstance(content, str) else "wb" | |
with tmp_path.open(write_mode, encoding="utf-8" if encode_utf_8 else None) as f: | |
f.write(content) | |
shutil.copy2(src=tmp_path, dst=path) #changed to allow overwriting cache files | |
os.remove(tmp_path) | |
try: | |
import torch._inductor.codecache | |
torch._inductor.codecache.write_atomic = patched_write_atomic | |
except: | |
pass | |
import torch | |
import torch.nn as nn | |
from diffusers.models import AutoencoderKLCogVideoX | |
from diffusers.schedulers import CogVideoXDDIMScheduler | |
from .custom_cogvideox_transformer_3d import CogVideoXTransformer3DModel | |
from .pipeline_cogvideox import CogVideoXPipeline | |
from contextlib import nullcontext | |
from accelerate import init_empty_weights | |
from accelerate.utils import set_module_tensor_to_device | |
from .utils import remove_specific_blocks, log | |
from comfy.utils import load_torch_file | |
script_directory = os.path.dirname(os.path.abspath(__file__)) | |
class CogVideoLoraSelect: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"lora": (folder_paths.get_filename_list("cogvideox_loras"), | |
{"tooltip": "LORA models are expected to be in ComfyUI/models/CogVideo/loras with .safetensors extension"}), | |
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.0001, "tooltip": "LORA strength, set to 0.0 to unmerge the LORA"}), | |
}, | |
"optional": { | |
"prev_lora":("COGLORA", {"default": None, "tooltip": "For loading multiple LoRAs"}), | |
"fuse_lora": ("BOOLEAN", {"default": False, "tooltip": "Fuse the LoRA weights into the transformer"}), | |
} | |
} | |
RETURN_TYPES = ("COGLORA",) | |
RETURN_NAMES = ("lora", ) | |
FUNCTION = "getlorapath" | |
CATEGORY = "CogVideoWrapper" | |
DESCRIPTION = "Select a LoRA model from ComfyUI/models/CogVideo/loras" | |
def getlorapath(self, lora, strength, prev_lora=None, fuse_lora=False): | |
cog_loras_list = [] | |
cog_lora = { | |
"path": folder_paths.get_full_path("cogvideox_loras", lora), | |
"strength": strength, | |
"name": lora.split(".")[0], | |
"fuse_lora": fuse_lora | |
} | |
if prev_lora is not None: | |
cog_loras_list.extend(prev_lora) | |
cog_loras_list.append(cog_lora) | |
print(cog_loras_list) | |
return (cog_loras_list,) | |
class CogVideoLoraSelectComfy: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"lora": (folder_paths.get_filename_list("loras"), | |
{"tooltip": "LORA models are expected to be in ComfyUI/models/loras with .safetensors extension"}), | |
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.0001, "tooltip": "LORA strength, set to 0.0 to unmerge the LORA"}), | |
}, | |
"optional": { | |
"prev_lora":("COGLORA", {"default": None, "tooltip": "For loading multiple LoRAs"}), | |
"fuse_lora": ("BOOLEAN", {"default": False, "tooltip": "Fuse the LoRA weights into the transformer"}), | |
} | |
} | |
RETURN_TYPES = ("COGLORA",) | |
RETURN_NAMES = ("lora", ) | |
FUNCTION = "getlorapath" | |
CATEGORY = "CogVideoWrapper" | |
DESCRIPTION = "Select a LoRA model from ComfyUI/models/loras" | |
def getlorapath(self, lora, strength, prev_lora=None, fuse_lora=False): | |
cog_loras_list = [] | |
cog_lora = { | |
"path": folder_paths.get_full_path("loras", lora), | |
"strength": strength, | |
"name": lora.split(".")[0], | |
"fuse_lora": fuse_lora | |
} | |
if prev_lora is not None: | |
cog_loras_list.extend(prev_lora) | |
cog_loras_list.append(cog_lora) | |
print(cog_loras_list) | |
return (cog_loras_list,) | |
#region DownloadAndLoadCogVideoModel | |
class DownloadAndLoadCogVideoModel: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ( | |
[ | |
"THUDM/CogVideoX-2b", | |
"THUDM/CogVideoX-5b", | |
"THUDM/CogVideoX-5b-I2V", | |
"kijai/CogVideoX-5b-1.5-T2V", | |
"kijai/CogVideoX-5b-1.5-I2V", | |
"bertjiazheng/KoolCogVideoX-5b", | |
"kijai/CogVideoX-Fun-2b", | |
"kijai/CogVideoX-Fun-5b", | |
"kijai/CogVideoX-5b-Tora", | |
"alibaba-pai/CogVideoX-Fun-V1.1-2b-InP", | |
"alibaba-pai/CogVideoX-Fun-V1.1-5b-InP", | |
"alibaba-pai/CogVideoX-Fun-V1.1-2b-Pose", | |
"alibaba-pai/CogVideoX-Fun-V1.1-5b-Pose", | |
"alibaba-pai/CogVideoX-Fun-V1.1-5b-Control", | |
"alibaba-pai/CogVideoX-Fun-V1.5-5b-InP", | |
"feizhengcong/CogvideoX-Interpolation", | |
"NimVideo/cogvideox-2b-img2vid" | |
], | |
), | |
}, | |
"optional": { | |
"precision": (["fp16", "fp32", "bf16"], | |
{"default": "bf16", "tooltip": "official recommendation is that 2b model should be fp16, 5b model should be bf16"} | |
), | |
"quantization": (['disabled', 'fp8_e4m3fn', 'fp8_e4m3fn_fastmode', 'torchao_fp8dq', "torchao_fp8dqrow", "torchao_int8dq", "torchao_fp6"], {"default": 'disabled', "tooltip": "enabled casts the transformer to torch.float8_e4m3fn, fastmode is only for latest nvidia GPUs and requires torch 2.4.0 and cu124 minimum"}), | |
"enable_sequential_cpu_offload": ("BOOLEAN", {"default": False, "tooltip": "significantly reducing memory usage and slows down the inference"}), | |
"block_edit": ("TRANSFORMERBLOCKS", {"default": None}), | |
"lora": ("COGLORA", {"default": None}), | |
"compile_args":("COMPILEARGS", ), | |
"attention_mode": ([ | |
"sdpa", | |
"fused_sdpa", | |
"sageattn", | |
"fused_sageattn", | |
"sageattn_qk_int8_pv_fp8_cuda", | |
"sageattn_qk_int8_pv_fp16_cuda", | |
"sageattn_qk_int8_pv_fp16_triton", | |
"fused_sageattn_qk_int8_pv_fp8_cuda", | |
"fused_sageattn_qk_int8_pv_fp16_cuda", | |
"fused_sageattn_qk_int8_pv_fp16_triton", | |
"comfy" | |
], {"default": "sdpa"}), | |
"load_device": (["main_device", "offload_device"], {"default": "main_device"}), | |
} | |
} | |
RETURN_TYPES = ("COGVIDEOMODEL", "VAE",) | |
RETURN_NAMES = ("model", "vae", ) | |
FUNCTION = "loadmodel" | |
CATEGORY = "CogVideoWrapper" | |
DESCRIPTION = "Downloads and loads the selected CogVideo model from Huggingface to 'ComfyUI/models/CogVideo'" | |
def loadmodel(self, model, precision, quantization="disabled", compile="disabled", | |
enable_sequential_cpu_offload=False, block_edit=None, lora=None, compile_args=None, | |
attention_mode="sdpa", load_device="main_device"): | |
transformer = None | |
if "sage" in attention_mode: | |
try: | |
from sageattention import sageattn | |
except Exception as e: | |
raise ValueError(f"Can't import SageAttention: {str(e)}") | |
if "qk_int8" in attention_mode: | |
try: | |
from sageattention import sageattn_qk_int8_pv_fp16_cuda | |
except Exception as e: | |
raise ValueError(f"Can't import SageAttention 2.0.0: {str(e)}") | |
if precision == "fp16" and "1.5" in model: | |
raise ValueError("1.5 models do not currently work in fp16") | |
device = mm.get_torch_device() | |
offload_device = mm.unet_offload_device() | |
manual_offloading = True | |
transformer_load_device = device if load_device == "main_device" else offload_device | |
mm.soft_empty_cache() | |
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision] | |
download_path = folder_paths.get_folder_paths("CogVideo")[0] | |
if "Fun" in model: | |
if "1.1" not in model and "1.5" not in model: | |
repo_id = "kijai/CogVideoX-Fun-pruned" | |
if "2b" in model: | |
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", "CogVideoX-Fun-2b-InP") # location of the official model | |
if not os.path.exists(base_path): | |
base_path = os.path.join(download_path, "CogVideoX-Fun-2b-InP") | |
elif "5b" in model: | |
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", "CogVideoX-Fun-5b-InP") # location of the official model | |
if not os.path.exists(base_path): | |
base_path = os.path.join(download_path, "CogVideoX-Fun-5b-InP") | |
else: | |
repo_id = model | |
base_path = os.path.join(folder_paths.models_dir, "CogVideoX_Fun", (model.split("/")[-1])) # location of the official model | |
if not os.path.exists(base_path): | |
base_path = os.path.join(download_path, (model.split("/")[-1])) | |
download_path = base_path | |
subfolder = "transformer" | |
allow_patterns = ["*transformer*", "*scheduler*", "*vae*"] | |
elif "2b" in model: | |
if 'img2vid' in model: | |
base_path = os.path.join(download_path, "cogvideox-2b-img2vid") | |
download_path = base_path | |
repo_id = model | |
else: | |
base_path = os.path.join(download_path, "CogVideo2B") | |
download_path = base_path | |
repo_id = model | |
subfolder = "transformer" | |
allow_patterns = ["*transformer*", "*scheduler*", "*vae*"] | |
elif "1.5-T2V" in model or "1.5-I2V" in model: | |
base_path = os.path.join(download_path, "CogVideoX-5b-1.5") | |
download_path = base_path | |
subfolder = "transformer_T2V" if "1.5-T2V" in model else "transformer_I2V" | |
allow_patterns = [f"*{subfolder}*", "*vae*", "*scheduler*"] | |
repo_id = "kijai/CogVideoX-5b-1.5" | |
else: | |
base_path = os.path.join(download_path, (model.split("/")[-1])) | |
download_path = base_path | |
repo_id = model | |
subfolder = "transformer" | |
allow_patterns = ["*transformer*", "*scheduler*", "*vae*"] | |
if "2b" in model: | |
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_2b.json') | |
else: | |
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_5b.json') | |
if not os.path.exists(base_path) or not os.path.exists(os.path.join(base_path, subfolder)): | |
log.info(f"Downloading model to: {base_path}") | |
from huggingface_hub import snapshot_download | |
snapshot_download( | |
repo_id=repo_id, | |
allow_patterns=allow_patterns, | |
ignore_patterns=["*text_encoder*", "*tokenizer*"], | |
local_dir=download_path, | |
local_dir_use_symlinks=False, | |
) | |
transformer = CogVideoXTransformer3DModel.from_pretrained(base_path, subfolder=subfolder, attention_mode=attention_mode) | |
transformer = transformer.to(dtype).to(transformer_load_device) | |
if "1.5" in model and not "fun" in model: | |
transformer.config.sample_height = 300 | |
transformer.config.sample_width = 300 | |
if block_edit is not None: | |
transformer = remove_specific_blocks(transformer, block_edit) | |
with open(scheduler_path) as f: | |
scheduler_config = json.load(f) | |
scheduler = CogVideoXDDIMScheduler.from_config(scheduler_config) | |
# VAE | |
vae = AutoencoderKLCogVideoX.from_pretrained(base_path, subfolder="vae").to(dtype).to(offload_device) | |
#pipeline | |
pipe = CogVideoXPipeline( | |
transformer, | |
scheduler, | |
dtype=dtype, | |
is_fun_inpaint="fun" in model.lower() and not ("pose" in model.lower() or "control" in model.lower()) | |
) | |
if "cogvideox-2b-img2vid" in model: | |
pipe.input_with_padding = False | |
#LoRAs | |
if lora is not None: | |
dimensionx_loras = ["orbit", "dimensionx"] # for now dimensionx loras need scaling | |
dimensionx_lora = False | |
adapter_list = [] | |
adapter_weights = [] | |
for l in lora: | |
if any(item in l["path"].lower() for item in dimensionx_loras): | |
dimensionx_lora = True | |
fuse = True if l["fuse_lora"] else False | |
lora_sd = load_torch_file(l["path"]) | |
lora_rank = None | |
for key, val in lora_sd.items(): | |
if "lora_B" in key: | |
lora_rank = val.shape[1] | |
break | |
if lora_rank is not None: | |
log.info(f"Merging rank {lora_rank} LoRA weights from {l['path']} with strength {l['strength']}") | |
adapter_name = l['path'].split("/")[-1].split(".")[0] | |
adapter_weight = l['strength'] | |
pipe.load_lora_weights(l['path'], weight_name=l['path'].split("/")[-1], lora_rank=lora_rank, adapter_name=adapter_name) | |
adapter_list.append(adapter_name) | |
adapter_weights.append(adapter_weight) | |
else: | |
try: #Fun trainer LoRAs are loaded differently | |
from .lora_utils import merge_lora | |
log.info(f"Merging LoRA weights from {l['path']} with strength {l['strength']}") | |
pipe.transformer = merge_lora(pipe.transformer, l["path"], l["strength"], device=transformer_load_device, state_dict=lora_sd) | |
except: | |
raise ValueError(f"Can't recognize LoRA {l['path']}") | |
del lora_sd | |
mm.soft_empty_cache() | |
if adapter_list: | |
pipe.set_adapters(adapter_list, adapter_weights=adapter_weights) | |
if fuse: | |
lora_scale = 1 | |
if dimensionx_lora: | |
lora_scale = lora_scale / lora_rank | |
pipe.fuse_lora(lora_scale=lora_scale, components=["transformer"]) | |
pipe.delete_adapters(adapter_list) | |
if "fused" in attention_mode: | |
from diffusers.models.attention import Attention | |
pipe.transformer.fuse_qkv_projections = True | |
for module in pipe.transformer.modules(): | |
if isinstance(module, Attention): | |
module.fuse_projections(fuse=True) | |
if compile_args is not None: | |
pipe.transformer.to(memory_format=torch.channels_last) | |
#fp8 | |
if quantization == "fp8_e4m3fn" or quantization == "fp8_e4m3fn_fastmode": | |
params_to_keep = {"patch_embed", "lora", "pos_embedding", "time_embedding", "norm_k", "norm_q", "to_k.bias", "to_q.bias", "to_v.bias"} | |
if "1.5" in model: | |
params_to_keep.update({"norm1.linear.weight", "ofs_embedding", "norm_final", "norm_out", "proj_out"}) | |
for name, param in pipe.transformer.named_parameters(): | |
if not any(keyword in name for keyword in params_to_keep): | |
param.data = param.data.to(torch.float8_e4m3fn) | |
if quantization == "fp8_e4m3fn_fastmode": | |
from .fp8_optimization import convert_fp8_linear | |
if "1.5" in model: | |
params_to_keep.update({"ff"}) #otherwise NaNs | |
convert_fp8_linear(pipe.transformer, dtype, params_to_keep=params_to_keep) | |
# compilation | |
if compile_args is not None: | |
torch._dynamo.config.cache_size_limit = compile_args["dynamo_cache_size_limit"] | |
for i, block in enumerate(pipe.transformer.transformer_blocks): | |
if "CogVideoXBlock" in str(block): | |
pipe.transformer.transformer_blocks[i] = torch.compile(block, fullgraph=compile_args["fullgraph"], dynamic=compile_args["dynamic"], backend=compile_args["backend"], mode=compile_args["mode"]) | |
if "torchao" in quantization: | |
try: | |
from torchao.quantization import ( | |
quantize_, | |
fpx_weight_only, | |
float8_dynamic_activation_float8_weight, | |
int8_dynamic_activation_int8_weight | |
) | |
except: | |
raise ImportError("torchao is not installed, please install torchao to use fp8dq") | |
def filter_fn(module: nn.Module, fqn: str) -> bool: | |
target_submodules = {'attn1', 'ff'} # avoid norm layers, 1.5 at least won't work with quantized norm1 #todo: test other models | |
if any(sub in fqn for sub in target_submodules): | |
return isinstance(module, nn.Linear) | |
return False | |
if "fp6" in quantization: #slower for some reason on 4090 | |
quant_func = fpx_weight_only(3, 2) | |
elif "fp8dq" in quantization: #very fast on 4090 when compiled | |
quant_func = float8_dynamic_activation_float8_weight() | |
elif 'fp8dqrow' in quantization: | |
from torchao.quantization.quant_api import PerRow | |
quant_func = float8_dynamic_activation_float8_weight(granularity=PerRow()) | |
elif 'int8dq' in quantization: | |
quant_func = int8_dynamic_activation_int8_weight() | |
for i, block in enumerate(pipe.transformer.transformer_blocks): | |
if "CogVideoXBlock" in str(block): | |
quantize_(block, quant_func, filter_fn=filter_fn) | |
manual_offloading = False # to disable manual .to(device) calls | |
if enable_sequential_cpu_offload: | |
pipe.enable_sequential_cpu_offload() | |
manual_offloading = False | |
# CogVideoXBlock( | |
# (norm1): CogVideoXLayerNormZero( | |
# (silu): SiLU() | |
# (linear): Linear(in_features=512, out_features=18432, bias=True) | |
# (norm): LayerNorm((3072,), eps=1e-05, elementwise_affine=True) | |
# ) | |
# (attn1): Attention( | |
# (norm_q): LayerNorm((64,), eps=1e-06, elementwise_affine=True) | |
# (norm_k): LayerNorm((64,), eps=1e-06, elementwise_affine=True) | |
# (to_q): Linear(in_features=3072, out_features=3072, bias=True) | |
# (to_k): Linear(in_features=3072, out_features=3072, bias=True) | |
# (to_v): Linear(in_features=3072, out_features=3072, bias=True) | |
# (to_out): ModuleList( | |
# (0): Linear(in_features=3072, out_features=3072, bias=True) | |
# (1): Dropout(p=0.0, inplace=False) | |
# ) | |
# ) | |
# (norm2): CogVideoXLayerNormZero( | |
# (silu): SiLU() | |
# (linear): Linear(in_features=512, out_features=18432, bias=True) | |
# (norm): LayerNorm((3072,), eps=1e-05, elementwise_affine=True) | |
# ) | |
# (ff): FeedForward( | |
# (net): ModuleList( | |
# (0): GELU( | |
# (proj): Linear(in_features=3072, out_features=12288, bias=True) | |
# ) | |
# (1): Dropout(p=0.0, inplace=False) | |
# (2): Linear(in_features=12288, out_features=3072, bias=True) | |
# (3): Dropout(p=0.0, inplace=False) | |
# ) | |
# ) | |
# ) | |
# if compile == "onediff": | |
# from onediffx import compile_pipe | |
# os.environ['NEXFORT_FX_FORCE_TRITON_SDPA'] = '1' | |
# pipe = compile_pipe( | |
# pipe, | |
# backend="nexfort", | |
# options= {"mode": "max-optimize:max-autotune:max-autotune", "memory_format": "channels_last", "options": {"inductor.optimize_linear_epilogue": False, "triton.fuse_attention_allow_fp16_reduction": False}}, | |
# ignores=["vae"], | |
# fuse_qkv_projections= False, | |
# ) | |
pipeline = { | |
"pipe": pipe, | |
"dtype": dtype, | |
"quantization": quantization, | |
"base_path": base_path, | |
"onediff": True if compile == "onediff" else False, | |
"cpu_offloading": enable_sequential_cpu_offload, | |
"manual_offloading": manual_offloading, | |
"scheduler_config": scheduler_config, | |
"model_name": model, | |
} | |
return (pipeline, vae) | |
#region GGUF | |
class DownloadAndLoadCogVideoGGUFModel: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ( | |
[ | |
"CogVideoX_5b_GGUF_Q4_0.safetensors", | |
"CogVideoX_5b_I2V_GGUF_Q4_0.safetensors", | |
"CogVideoX_5b_1_5_I2V_GGUF_Q4_0.safetensors", | |
"CogVideoX_5b_fun_GGUF_Q4_0.safetensors", | |
"CogVideoX_5b_fun_1_1_GGUF_Q4_0.safetensors", | |
"CogVideoX_5b_fun_1_1_Pose_GGUF_Q4_0.safetensors", | |
"CogVideoX_5b_Interpolation_GGUF_Q4_0.safetensors", | |
"CogVideoX_5b_Tora_GGUF_Q4_0.safetensors", | |
], | |
), | |
"vae_precision": (["fp16", "fp32", "bf16"], {"default": "bf16", "tooltip": "VAE dtype"}), | |
"fp8_fastmode": ("BOOLEAN", {"default": False, "tooltip": "only supported on 4090 and later GPUs, also requires torch 2.4.0 with cu124 minimum"}), | |
"load_device": (["main_device", "offload_device"], {"default": "main_device"}), | |
"enable_sequential_cpu_offload": ("BOOLEAN", {"default": False, "tooltip": "significantly reducing memory usage and slows down the inference"}), | |
}, | |
"optional": { | |
"block_edit": ("TRANSFORMERBLOCKS", {"default": None}), | |
#"compile_args":("COMPILEARGS", ), | |
"attention_mode": (["sdpa", "sageattn"], {"default": "sdpa"}), | |
} | |
} | |
RETURN_TYPES = ("COGVIDEOMODEL", "VAE",) | |
RETURN_NAMES = ("model", "vae",) | |
FUNCTION = "loadmodel" | |
CATEGORY = "CogVideoWrapper" | |
def loadmodel(self, model, vae_precision, fp8_fastmode, load_device, enable_sequential_cpu_offload, | |
block_edit=None, compile_args=None, attention_mode="sdpa"): | |
if "sage" in attention_mode: | |
try: | |
from sageattention import sageattn | |
except Exception as e: | |
raise ValueError(f"Can't import SageAttention: {str(e)}") | |
device = mm.get_torch_device() | |
offload_device = mm.unet_offload_device() | |
mm.soft_empty_cache() | |
vae_dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[vae_precision] | |
download_path = os.path.join(folder_paths.models_dir, 'CogVideo', 'GGUF') | |
gguf_path = os.path.join(folder_paths.models_dir, 'diffusion_models', model) # check MinusZone's model path first | |
if not os.path.exists(gguf_path): | |
gguf_path = os.path.join(download_path, model) | |
if not os.path.exists(gguf_path): | |
if "I2V" in model or "1_1" in model or "Interpolation" in model or "Tora" in model: | |
repo_id = "Kijai/CogVideoX_GGUF" | |
else: | |
repo_id = "MinusZoneAI/ComfyUI-CogVideoX-MZ" | |
log.info(f"Downloading model to: {gguf_path}") | |
from huggingface_hub import snapshot_download | |
snapshot_download( | |
repo_id=repo_id, | |
allow_patterns=[f"*{model}*"], | |
local_dir=download_path, | |
local_dir_use_symlinks=False, | |
) | |
if "5b" in model: | |
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_5b.json') | |
transformer_path = os.path.join(script_directory, 'configs', 'transformer_config_5b.json') | |
elif "2b" in model: | |
scheduler_path = os.path.join(script_directory, 'configs', 'scheduler_config_2b.json') | |
transformer_path = os.path.join(script_directory, 'configs', 'transformer_config_2b.json') | |
with open(transformer_path) as f: | |
transformer_config = json.load(f) | |
from . import mz_gguf_loader | |
import importlib | |
importlib.reload(mz_gguf_loader) | |
with mz_gguf_loader.quantize_lazy_load(): | |
if "fun" in model: | |
if "Pose" in model: | |
transformer_config["in_channels"] = 32 | |
else: | |
transformer_config["in_channels"] = 33 | |
elif "I2V" in model or "Interpolation" in model: | |
transformer_config["in_channels"] = 32 | |
if "1_5" in model: | |
transformer_config["ofs_embed_dim"] = 512 | |
transformer_config["use_learned_positional_embeddings"] = False | |
transformer_config["patch_size_t"] = 2 | |
transformer_config["patch_bias"] = False | |
transformer_config["sample_height"] = 300 | |
transformer_config["sample_width"] = 300 | |
else: | |
transformer_config["in_channels"] = 16 | |
transformer = CogVideoXTransformer3DModel.from_config(transformer_config, attention_mode=attention_mode) | |
cast_dtype = vae_dtype | |
params_to_keep = {"patch_embed", "pos_embedding", "time_embedding"} | |
if "2b" in model: | |
cast_dtype = torch.float16 | |
elif "1_5" in model: | |
params_to_keep = {"norm1.linear.weight", "patch_embed", "time_embedding", "ofs_embedding", "norm_final", "norm_out", "proj_out"} | |
cast_dtype = torch.bfloat16 | |
for name, param in transformer.named_parameters(): | |
if not any(keyword in name for keyword in params_to_keep): | |
param.data = param.data.to(torch.float8_e4m3fn) | |
else: | |
param.data = param.data.to(cast_dtype) | |
#for name, param in transformer.named_parameters(): | |
# print(name, param.data.dtype) | |
if block_edit is not None: | |
transformer = remove_specific_blocks(transformer, block_edit) | |
transformer.attention_mode = attention_mode | |
if fp8_fastmode: | |
params_to_keep = {"patch_embed", "lora", "pos_embedding", "time_embedding"} | |
if "1.5" in model: | |
params_to_keep.update({"ff","norm1.linear.weight", "norm_k", "norm_q","ofs_embedding", "norm_final", "norm_out", "proj_out"}) | |
from .fp8_optimization import convert_fp8_linear | |
convert_fp8_linear(transformer, vae_dtype, params_to_keep=params_to_keep) | |
with open(scheduler_path) as f: | |
scheduler_config = json.load(f) | |
scheduler = CogVideoXDDIMScheduler.from_config(scheduler_config, subfolder="scheduler") | |
# VAE | |
vae_dl_path = os.path.join(folder_paths.models_dir, 'CogVideo', 'VAE') | |
vae_path = os.path.join(vae_dl_path, "cogvideox_vae.safetensors") | |
if not os.path.exists(vae_path): | |
log.info(f"Downloading VAE model to: {vae_path}") | |
from huggingface_hub import snapshot_download | |
snapshot_download( | |
repo_id="Kijai/CogVideoX-Fun-pruned", | |
allow_patterns=["*cogvideox_vae.safetensors*"], | |
local_dir=vae_dl_path, | |
local_dir_use_symlinks=False, | |
) | |
with open(os.path.join(script_directory, 'configs', 'vae_config.json')) as f: | |
vae_config = json.load(f) | |
#VAE | |
vae_sd = load_torch_file(vae_path) | |
vae = AutoencoderKLCogVideoX.from_config(vae_config).to(vae_dtype).to(offload_device) | |
vae.load_state_dict(vae_sd) | |
del vae_sd | |
pipe = CogVideoXPipeline( | |
transformer, | |
scheduler, | |
dtype=vae_dtype, | |
is_fun_inpaint="fun" in model.lower() and not ("pose" in model.lower() or "control" in model.lower()) | |
) | |
if enable_sequential_cpu_offload: | |
pipe.enable_sequential_cpu_offload() | |
sd = load_torch_file(gguf_path) | |
pipe.transformer = mz_gguf_loader.quantize_load_state_dict(pipe.transformer, sd, device="cpu") | |
del sd | |
if load_device == "offload_device": | |
pipe.transformer.to(offload_device) | |
else: | |
pipe.transformer.to(device) | |
pipeline = { | |
"pipe": pipe, | |
"dtype": vae_dtype, | |
"quantization": "GGUF", | |
"base_path": model, | |
"onediff": False, | |
"cpu_offloading": enable_sequential_cpu_offload, | |
"scheduler_config": scheduler_config, | |
"model_name": model, | |
"manual_offloading": True, | |
} | |
return (pipeline, vae) | |
#region ModelLoader | |
class CogVideoXModelLoader: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "These models are loaded from the 'ComfyUI/models/diffusion_models' -folder",}), | |
"base_precision": (["fp16", "fp32", "bf16"], {"default": "bf16"}), | |
"quantization": (['disabled', 'fp8_e4m3fn', 'fp8_e4m3fn_fast', 'torchao_fp8dq', "torchao_fp8dqrow", "torchao_int8dq", "torchao_fp6"], {"default": 'disabled', "tooltip": "optional quantization method"}), | |
"load_device": (["main_device", "offload_device"], {"default": "main_device"}), | |
"enable_sequential_cpu_offload": ("BOOLEAN", {"default": False, "tooltip": "significantly reducing memory usage and slows down the inference"}), | |
}, | |
"optional": { | |
"block_edit": ("TRANSFORMERBLOCKS", {"default": None}), | |
"lora": ("COGLORA", {"default": None}), | |
"compile_args":("COMPILEARGS", ), | |
"attention_mode": ([ | |
"sdpa", | |
"fused_sdpa", | |
"sageattn", | |
"fused_sageattn", | |
"sageattn_qk_int8_pv_fp8_cuda", | |
"sageattn_qk_int8_pv_fp16_cuda", | |
"sageattn_qk_int8_pv_fp16_triton", | |
"fused_sageattn_qk_int8_pv_fp8_cuda", | |
"fused_sageattn_qk_int8_pv_fp16_cuda", | |
"fused_sageattn_qk_int8_pv_fp16_triton", | |
"comfy" | |
], {"default": "sdpa"}), | |
} | |
} | |
RETURN_TYPES = ("COGVIDEOMODEL",) | |
RETURN_NAMES = ("model", ) | |
FUNCTION = "loadmodel" | |
CATEGORY = "CogVideoWrapper" | |
def loadmodel(self, model, base_precision, load_device, enable_sequential_cpu_offload, | |
block_edit=None, compile_args=None, lora=None, attention_mode="sdpa", quantization="disabled"): | |
transformer = None | |
if "sage" in attention_mode: | |
try: | |
from sageattention import sageattn | |
except Exception as e: | |
raise ValueError(f"Can't import SageAttention: {str(e)}") | |
device = mm.get_torch_device() | |
offload_device = mm.unet_offload_device() | |
manual_offloading = True | |
transformer_load_device = device if load_device == "main_device" else offload_device | |
mm.soft_empty_cache() | |
base_dtype = {"fp8_e4m3fn": torch.float8_e4m3fn, "fp8_e4m3fn_fast": torch.float8_e4m3fn, "bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[base_precision] | |
model_path = folder_paths.get_full_path_or_raise("diffusion_models", model) | |
sd = load_torch_file(model_path, device=transformer_load_device) | |
model_type = "" | |
if sd["patch_embed.proj.weight"].shape == (3072, 33, 2, 2): | |
model_type = "fun_5b" | |
elif sd["patch_embed.proj.weight"].shape == (3072, 16, 2, 2): | |
model_type = "5b" | |
elif sd["patch_embed.proj.weight"].shape == (3072, 128): | |
model_type = "5b_1_5" | |
elif sd["patch_embed.proj.weight"].shape == (3072, 256): | |
model_type = "5b_I2V_1_5" | |
elif sd["patch_embed.proj.weight"].shape == (1920, 33, 2, 2): | |
model_type = "fun_2b" | |
elif sd["patch_embed.proj.weight"].shape == (1920, 32, 2, 2): | |
model_type = "cogvideox-2b-img2vid" | |
elif sd["patch_embed.proj.weight"].shape == (1920, 16, 2, 2): | |
model_type = "2b" | |
elif sd["patch_embed.proj.weight"].shape == (3072, 32, 2, 2): | |
if "pos_embedding" in sd: | |
model_type = "fun_5b_pose" | |
else: | |
model_type = "I2V_5b" | |
else: | |
raise Exception("Selected model is not recognized") | |
log.info(f"Detected CogVideoX model type: {model_type}") | |
if "5b" in model_type: | |
scheduler_config_path = os.path.join(script_directory, 'configs', 'scheduler_config_5b.json') | |
transformer_config_path = os.path.join(script_directory, 'configs', 'transformer_config_5b.json') | |
elif "2b" in model_type: | |
scheduler_config_path = os.path.join(script_directory, 'configs', 'scheduler_config_2b.json') | |
transformer_config_path = os.path.join(script_directory, 'configs', 'transformer_config_2b.json') | |
with open(transformer_config_path) as f: | |
transformer_config = json.load(f) | |
if model_type in ["I2V", "I2V_5b", "fun_5b_pose", "5b_I2V_1_5", "cogvideox-2b-img2vid"]: | |
transformer_config["in_channels"] = 32 | |
if "1_5" in model_type: | |
transformer_config["ofs_embed_dim"] = 512 | |
elif "fun" in model_type: | |
transformer_config["in_channels"] = 33 | |
else: | |
transformer_config["in_channels"] = 16 | |
if "1_5" in model_type: | |
transformer_config["use_learned_positional_embeddings"] = False | |
transformer_config["patch_size_t"] = 2 | |
transformer_config["patch_bias"] = False | |
transformer_config["sample_height"] = 300 | |
transformer_config["sample_width"] = 300 | |
with init_empty_weights(): | |
transformer = CogVideoXTransformer3DModel.from_config(transformer_config, attention_mode=attention_mode) | |
#load weights | |
#params_to_keep = {} | |
log.info("Using accelerate to load and assign model weights to device...") | |
for name, param in transformer.named_parameters(): | |
#dtype_to_use = base_dtype if any(keyword in name for keyword in params_to_keep) else dtype | |
set_module_tensor_to_device(transformer, name, device=transformer_load_device, dtype=base_dtype, value=sd[name]) | |
del sd | |
# TODO fix for transformer model patch_embed.pos_embedding dtype | |
# or at add line ComfyUI-CogVideoXWrapper/embeddings.py:129 code | |
# pos_embedding = pos_embedding.to(embeds.device, dtype=embeds.dtype) | |
transformer = transformer.to(base_dtype).to(transformer_load_device) | |
#scheduler | |
with open(scheduler_config_path) as f: | |
scheduler_config = json.load(f) | |
scheduler = CogVideoXDDIMScheduler.from_config(scheduler_config, subfolder="scheduler") | |
if block_edit is not None: | |
transformer = remove_specific_blocks(transformer, block_edit) | |
if "fused" in attention_mode: | |
from diffusers.models.attention import Attention | |
transformer.fuse_qkv_projections = True | |
for module in transformer.modules(): | |
if isinstance(module, Attention): | |
module.fuse_projections(fuse=True) | |
transformer.attention_mode = attention_mode | |
pipe = CogVideoXPipeline( | |
transformer, | |
scheduler, | |
dtype=base_dtype, | |
is_fun_inpaint="fun" in model.lower() and not ("pose" in model.lower() or "control" in model.lower()) | |
) | |
if "cogvideox-2b-img2vid" == model_type: | |
pipe.input_with_padding = False | |
if enable_sequential_cpu_offload: | |
pipe.enable_sequential_cpu_offload() | |
#LoRAs | |
if lora is not None: | |
dimensionx_loras = ["orbit", "dimensionx"] # for now dimensionx loras need scaling | |
dimensionx_lora = False | |
adapter_list = [] | |
adapter_weights = [] | |
for l in lora: | |
if any(item in l["path"].lower() for item in dimensionx_loras): | |
dimensionx_lora = True | |
fuse = True if l["fuse_lora"] else False | |
lora_sd = load_torch_file(l["path"]) | |
lora_rank = None | |
for key, val in lora_sd.items(): | |
if "lora_B" in key: | |
lora_rank = val.shape[1] | |
break | |
if lora_rank is not None: | |
log.info(f"Merging rank {lora_rank} LoRA weights from {l['path']} with strength {l['strength']}") | |
adapter_name = l['path'].split("/")[-1].split(".")[0] | |
adapter_weight = l['strength'] | |
pipe.load_lora_weights(l['path'], weight_name=l['path'].split("/")[-1], lora_rank=lora_rank, adapter_name=adapter_name) | |
adapter_list.append(adapter_name) | |
adapter_weights.append(adapter_weight) | |
else: | |
try: #Fun trainer LoRAs are loaded differently | |
from .lora_utils import merge_lora | |
log.info(f"Merging LoRA weights from {l['path']} with strength {l['strength']}") | |
pipe.transformer = merge_lora(pipe.transformer, l["path"], l["strength"], device=transformer_load_device, state_dict=lora_sd) | |
except: | |
raise ValueError(f"Can't recognize LoRA {l['path']}") | |
if adapter_list: | |
pipe.set_adapters(adapter_list, adapter_weights=adapter_weights) | |
if fuse: | |
lora_scale = 1 | |
if dimensionx_lora: | |
lora_scale = lora_scale / lora_rank | |
pipe.fuse_lora(lora_scale=lora_scale, components=["transformer"]) | |
if compile_args is not None: | |
pipe.transformer.to(memory_format=torch.channels_last) | |
#quantization | |
if quantization == "fp8_e4m3fn" or quantization == "fp8_e4m3fn_fast": | |
params_to_keep = {"patch_embed", "lora", "pos_embedding", "time_embedding", "norm_k", "norm_q", "to_k.bias", "to_q.bias", "to_v.bias"} | |
if "1.5" in model: | |
params_to_keep.update({"norm1.linear.weight", "ofs_embedding", "norm_final", "norm_out", "proj_out"}) | |
for name, param in pipe.transformer.named_parameters(): | |
if not any(keyword in name for keyword in params_to_keep): | |
param.data = param.data.to(torch.float8_e4m3fn) | |
if quantization == "fp8_e4m3fn_fast": | |
from .fp8_optimization import convert_fp8_linear | |
if "1.5" in model: | |
params_to_keep.update({"ff"}) #otherwise NaNs | |
convert_fp8_linear(pipe.transformer, base_dtype, params_to_keep=params_to_keep) | |
#compile | |
if compile_args is not None: | |
torch._dynamo.config.cache_size_limit = compile_args["dynamo_cache_size_limit"] | |
for i, block in enumerate(pipe.transformer.transformer_blocks): | |
if "CogVideoXBlock" in str(block): | |
pipe.transformer.transformer_blocks[i] = torch.compile(block, fullgraph=compile_args["fullgraph"], dynamic=compile_args["dynamic"], backend=compile_args["backend"], mode=compile_args["mode"]) | |
if "torchao" in quantization: | |
try: | |
from torchao.quantization import ( | |
quantize_, | |
fpx_weight_only, | |
float8_dynamic_activation_float8_weight, | |
int8_dynamic_activation_int8_weight | |
) | |
except: | |
raise ImportError("torchao is not installed, please install torchao to use fp8dq") | |
def filter_fn(module: nn.Module, fqn: str) -> bool: | |
target_submodules = {'attn1', 'ff'} # avoid norm layers, 1.5 at least won't work with quantized norm1 #todo: test other models | |
if any(sub in fqn for sub in target_submodules): | |
return isinstance(module, nn.Linear) | |
return False | |
if "fp6" in quantization: #slower for some reason on 4090 | |
quant_func = fpx_weight_only(3, 2) | |
elif "fp8dq" in quantization: #very fast on 4090 when compiled | |
quant_func = float8_dynamic_activation_float8_weight() | |
elif 'fp8dqrow' in quantization: | |
from torchao.quantization.quant_api import PerRow | |
quant_func = float8_dynamic_activation_float8_weight(granularity=PerRow()) | |
elif 'int8dq' in quantization: | |
quant_func = int8_dynamic_activation_int8_weight() | |
for i, block in enumerate(pipe.transformer.transformer_blocks): | |
if "CogVideoXBlock" in str(block): | |
quantize_(block, quant_func, filter_fn=filter_fn) | |
manual_offloading = False # to disable manual .to(device) calls | |
log.info(f"Quantized transformer blocks to {quantization}") | |
pipeline = { | |
"pipe": pipe, | |
"dtype": base_dtype, | |
"quantization": quantization, | |
"base_path": model, | |
"onediff": False, | |
"cpu_offloading": enable_sequential_cpu_offload, | |
"scheduler_config": scheduler_config, | |
"model_name": model, | |
"manual_offloading": manual_offloading, | |
} | |
return (pipeline,) | |
#region VAE | |
class CogVideoXVAELoader: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model_name": (folder_paths.get_filename_list("vae"), {"tooltip": "These models are loaded from 'ComfyUI/models/vae'"}), | |
}, | |
"optional": { | |
"precision": (["fp16", "fp32", "bf16"], | |
{"default": "bf16"} | |
), | |
"compile_args":("COMPILEARGS", ), | |
} | |
} | |
RETURN_TYPES = ("VAE",) | |
RETURN_NAMES = ("vae", ) | |
FUNCTION = "loadmodel" | |
CATEGORY = "CogVideoWrapper" | |
DESCRIPTION = "Loads CogVideoX VAE model from 'ComfyUI/models/vae'" | |
def loadmodel(self, model_name, precision, compile_args=None): | |
device = mm.get_torch_device() | |
offload_device = mm.unet_offload_device() | |
dtype = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32}[precision] | |
with open(os.path.join(script_directory, 'configs', 'vae_config.json')) as f: | |
vae_config = json.load(f) | |
model_path = folder_paths.get_full_path("vae", model_name) | |
vae_sd = load_torch_file(model_path) | |
vae = AutoencoderKLCogVideoX.from_config(vae_config).to(dtype).to(offload_device) | |
vae.load_state_dict(vae_sd) | |
#compile | |
if compile_args is not None: | |
torch._dynamo.config.cache_size_limit = compile_args["dynamo_cache_size_limit"] | |
vae = torch.compile(vae, fullgraph=compile_args["fullgraph"], dynamic=compile_args["dynamic"], backend=compile_args["backend"], mode=compile_args["mode"]) | |
return (vae,) | |
#region Tora | |
class DownloadAndLoadToraModel: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ( | |
[ | |
"kijai/CogVideoX-5b-Tora", | |
"kijai/CogVideoX-5b-Tora-I2V", | |
], | |
), | |
}, | |
} | |
RETURN_TYPES = ("TORAMODEL",) | |
RETURN_NAMES = ("tora_model", ) | |
FUNCTION = "loadmodel" | |
CATEGORY = "CogVideoWrapper" | |
DESCRIPTION = "Downloads and loads the the Tora model from Huggingface to 'ComfyUI/models/CogVideo/CogVideoX-5b-Tora'" | |
def loadmodel(self, model): | |
device = mm.get_torch_device() | |
offload_device = mm.unet_offload_device() | |
mm.soft_empty_cache() | |
download_path = folder_paths.get_folder_paths("CogVideo")[0] | |
from .tora.traj_module import MGF | |
try: | |
from accelerate import init_empty_weights | |
from accelerate.utils import set_module_tensor_to_device | |
is_accelerate_available = True | |
except: | |
is_accelerate_available = False | |
pass | |
download_path = os.path.join(folder_paths.models_dir, 'CogVideo', "CogVideoX-5b-Tora") | |
fuser_model = "fuser.safetensors" if not "I2V" in model else "fuser_I2V.safetensors" | |
fuser_path = os.path.join(download_path, "fuser", fuser_model) | |
if not os.path.exists(fuser_path): | |
log.info(f"Downloading Fuser model to: {fuser_path}") | |
from huggingface_hub import snapshot_download | |
snapshot_download( | |
repo_id=model, | |
allow_patterns=[fuser_model], | |
local_dir=download_path, | |
local_dir_use_symlinks=False, | |
) | |
hidden_size = 3072 | |
num_layers = 42 | |
with (init_empty_weights() if is_accelerate_available else nullcontext()): | |
fuser_list = nn.ModuleList([MGF(128, hidden_size) for _ in range(num_layers)]) | |
fuser_sd = load_torch_file(fuser_path) | |
if is_accelerate_available: | |
for key in fuser_sd: | |
set_module_tensor_to_device(fuser_list, key, dtype=torch.float16, device=device, value=fuser_sd[key]) | |
else: | |
fuser_list.load_state_dict(fuser_sd) | |
for module in fuser_list: | |
for param in module.parameters(): | |
param.data = param.data.to(torch.bfloat16).to(device) | |
del fuser_sd | |
traj_extractor_model = "traj_extractor.safetensors" if not "I2V" in model else "traj_extractor_I2V.safetensors" | |
traj_extractor_path = os.path.join(download_path, "traj_extractor", traj_extractor_model) | |
if not os.path.exists(traj_extractor_path): | |
log.info(f"Downloading trajectory extractor model to: {traj_extractor_path}") | |
from huggingface_hub import snapshot_download | |
snapshot_download( | |
repo_id="kijai/CogVideoX-5b-Tora", | |
allow_patterns=[traj_extractor_model], | |
local_dir=download_path, | |
local_dir_use_symlinks=False, | |
) | |
from .tora.traj_module import TrajExtractor | |
with (init_empty_weights() if is_accelerate_available else nullcontext()): | |
traj_extractor = TrajExtractor( | |
vae_downsize=(4, 8, 8), | |
patch_size=2, | |
nums_rb=2, | |
cin=16, | |
channels=[128] * 42, | |
sk=True, | |
use_conv=False, | |
) | |
traj_sd = load_torch_file(traj_extractor_path) | |
if is_accelerate_available: | |
for key in traj_sd: | |
set_module_tensor_to_device(traj_extractor, key, dtype=torch.float32, device=device, value=traj_sd[key]) | |
else: | |
traj_extractor.load_state_dict(traj_sd) | |
traj_extractor.to(torch.float32).to(device) | |
toramodel = { | |
"fuser_list": fuser_list, | |
"traj_extractor": traj_extractor, | |
} | |
return (toramodel,) | |
#region controlnet | |
class DownloadAndLoadCogVideoControlNet: | |
def INPUT_TYPES(s): | |
return { | |
"required": { | |
"model": ( | |
[ | |
"TheDenk/cogvideox-2b-controlnet-hed-v1", | |
"TheDenk/cogvideox-2b-controlnet-canny-v1", | |
"TheDenk/cogvideox-5b-controlnet-hed-v1", | |
"TheDenk/cogvideox-5b-controlnet-canny-v1" | |
], | |
), | |
}, | |
} | |
RETURN_TYPES = ("COGVIDECONTROLNETMODEL",) | |
RETURN_NAMES = ("cogvideo_controlnet", ) | |
FUNCTION = "loadmodel" | |
CATEGORY = "CogVideoWrapper" | |
def loadmodel(self, model): | |
from .cogvideo_controlnet import CogVideoXControlnet | |
device = mm.get_torch_device() | |
offload_device = mm.unet_offload_device() | |
mm.soft_empty_cache() | |
download_path = os.path.join(folder_paths.models_dir, 'CogVideo', 'ControlNet') | |
base_path = os.path.join(download_path, (model.split("/")[-1])) | |
if not os.path.exists(base_path): | |
log.info(f"Downloading model to: {base_path}") | |
from huggingface_hub import snapshot_download | |
snapshot_download( | |
repo_id=model, | |
ignore_patterns=["*text_encoder*", "*tokenizer*"], | |
local_dir=base_path, | |
local_dir_use_symlinks=False, | |
) | |
controlnet = CogVideoXControlnet.from_pretrained(base_path) | |
return (controlnet,) | |
NODE_CLASS_MAPPINGS = { | |
"DownloadAndLoadCogVideoModel": DownloadAndLoadCogVideoModel, | |
"DownloadAndLoadCogVideoGGUFModel": DownloadAndLoadCogVideoGGUFModel, | |
"DownloadAndLoadCogVideoControlNet": DownloadAndLoadCogVideoControlNet, | |
"DownloadAndLoadToraModel": DownloadAndLoadToraModel, | |
"CogVideoLoraSelect": CogVideoLoraSelect, | |
"CogVideoXVAELoader": CogVideoXVAELoader, | |
"CogVideoXModelLoader": CogVideoXModelLoader, | |
"CogVideoLoraSelectComfy": CogVideoLoraSelectComfy | |
} | |
NODE_DISPLAY_NAME_MAPPINGS = { | |
"DownloadAndLoadCogVideoModel": "(Down)load CogVideo Model", | |
"DownloadAndLoadCogVideoGGUFModel": "(Down)load CogVideo GGUF Model", | |
"DownloadAndLoadCogVideoControlNet": "(Down)load CogVideo ControlNet", | |
"DownloadAndLoadToraModel": "(Down)load Tora Model", | |
"CogVideoLoraSelect": "CogVideo LoraSelect", | |
"CogVideoXVAELoader": "CogVideoX VAE Loader", | |
"CogVideoXModelLoader": "CogVideoX Model Loader", | |
"CogVideoLoraSelectComfy": "CogVideo LoraSelect Comfy" | |
} |