File size: 1,437 Bytes
1b80e0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import re
import gradio as gr
from moondream import VisionEncoder, TextModel
from huggingface_hub import snapshot_download
from threading import Thread
from transformers import TextIteratorStreamer

model_path = snapshot_download("vikhyatk/moondream1")
vision_encoder = VisionEncoder(model_path)
text_model = TextModel(model_path)

def moondream(img, prompt):
    image_embeds = vision_encoder(img)
    streamer = TextIteratorStreamer(text_model.tokenizer, skip_special_tokens=True)
    thread = Thread(target=text_model.answer_question, kwargs={
        "image_embeds": image_embeds, "question": prompt, "streamer": streamer})
    thread.start()

    buffer = ""
    for new_text in streamer:
        clean_text = re.sub("<$|END$", "", new_text)
        buffer += clean_text
        yield buffer.strip("<END")

with gr.Blocks() as demo:
    gr.Markdown("# πŸŒ” moondream \n ### A tiny vision language model. [GitHub](https://github.com/vikhyat/moondream)")
    with gr.Row():
        prompt = gr.Textbox(label='Input Prompt', placeholder='Type here...', scale=4)
        submit = gr.Button('Submit')
    with gr.Row():
        img = gr.Image(type='pil', label='Upload an Image')
        output = gr.TextArea(label="Response", info='Please wait for a few seconds..')
    submit.click(moondream, [img, prompt], output)
    prompt.submit(moondream, [img, prompt], output)

demo.queue().launch(debug=True)