netherator / app.py
Yeb Havinga
Refactor model+task code using a factory. Run black
5da87aa
raw
history blame
9.41 kB
import json
import os
import time
from random import randint
import psutil
import streamlit as st
import torch
from transformers import (AutoModelForCausalLM, AutoModelForSeq2SeqLM,
AutoTokenizer, pipeline, set_seed)
device = torch.cuda.device_count() - 1
@st.cache(suppress_st_warning=True, allow_output_mutation=True)
def load_model(model_name, task):
os.environ["TOKENIZERS_PARALLELISM"] = "false"
try:
if not os.path.exists(".streamlit/secrets.toml"):
raise FileNotFoundError
access_token = st.secrets.get("netherator")
except FileNotFoundError:
access_token = os.environ.get("HF_ACCESS_TOKEN", None)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=access_token)
if tokenizer.pad_token is None:
print("Adding pad_token to the tokenizer")
tokenizer.pad_token = tokenizer.eos_token
auto_model_class = (
AutoModelForSeq2SeqLM if "translation" in task else AutoModelForCausalLM
)
model = auto_model_class.from_pretrained(model_name, use_auth_token=access_token)
if device != -1:
model.to(f"cuda:{device}")
return tokenizer, model
class Generator:
def __init__(self, model_name, task, desc):
self.model_name = model_name
self.task = task
self.desc = desc
self.tokenizer = None
self.model = None
self.pipeline = None
self.load()
def load(self):
if not self.pipeline:
print(f"Loading model {self.model_name}")
self.tokenizer, self.model = load_model(self.model_name, self.task)
self.pipeline = pipeline(
task=self.task,
model=self.model,
tokenizer=self.tokenizer,
device=device,
)
def get_text(self, text: str, **generate_kwargs) -> str:
return self.pipeline(text, **generate_kwargs)
class GeneratorFactory:
def __init__(self):
self.generators = []
def add_generator(self, model_name, task, desc):
g = Generator(model_name, task, desc)
g.load()
self.generators.append(g)
def get_generator(self, model_desc):
for g in self.generators:
if g.desc == model_desc:
return g
return None
GENERATORS = [
{
"model_name": "yhavinga/gpt-neo-125M-dutch-nedd",
"desc": "GPT-Neo Small Dutch(book finetune)",
"task": "text-generation",
},
{
"model_name": "yhavinga/gpt2-medium-dutch-nedd",
"desc": "GPT2 Medium Dutch (book finetune)",
"task": "text-generation",
},
{
"model_name": "yhavinga/t5-small-24L-ccmatrix-multi",
"desc": "Dutch<->English T5 small 24 layers",
"task": "translation_nl_to_en",
},
]
generators = GeneratorFactory()
def instantiate_generators():
for g in GENERATORS:
with st.spinner(text=f"Loading the model {g['desc']} ..."):
generators.add_generator(**g)
def main():
st.set_page_config( # Alternate names: setup_page, page, layout
page_title="Netherator", # String or None. Strings get appended with "• Streamlit".
layout="wide", # Can be "centered" or "wide". In the future also "dashboard", etc.
initial_sidebar_state="expanded", # Can be "auto", "expanded", "collapsed"
page_icon="📚", # String, anything supported by st.image, or None.
)
instantiate_generators()
with open("style.css") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
st.sidebar.image("demon-reading-Stewart-Orr.png", width=200)
st.sidebar.markdown(
"""# Netherator
Nederlandse verhalenverteller"""
)
model_desc = st.sidebar.selectbox(
"Model", [p["desc"] for p in GENERATORS if "generation" in p["task"]], index=1
)
st.sidebar.title("Parameters:")
if "prompt_box" not in st.session_state:
st.session_state["prompt_box"] = "Het was een koude winterdag"
st.session_state["text"] = st.text_area("Enter text", st.session_state.prompt_box)
max_length = st.sidebar.number_input(
"Lengte van de tekst",
value=200,
max_value=512,
)
no_repeat_ngram_size = st.sidebar.number_input(
"No-repeat NGram size", min_value=1, max_value=5, value=3
)
repetition_penalty = st.sidebar.number_input(
"Repetition penalty", min_value=0.0, max_value=5.0, value=1.2, step=0.1
)
num_return_sequences = st.sidebar.number_input(
"Num return sequences", min_value=1, max_value=5, value=1
)
seed_placeholder = st.sidebar.empty()
if "seed" not in st.session_state:
print(f"Session state {st.session_state} does not contain seed")
st.session_state["seed"] = 4162549114
print(f"Seed is set to: {st.session_state['seed']}")
seed = seed_placeholder.number_input(
"Seed", min_value=0, max_value=2**32 - 1, value=st.session_state["seed"]
)
def set_random_seed():
st.session_state["seed"] = randint(0, 2**32 - 1)
seed = seed_placeholder.number_input(
"Seed", min_value=0, max_value=2**32 - 1, value=st.session_state["seed"]
)
print(f"New random seed set to: {seed}")
if st.button("New random seed?"):
set_random_seed()
if sampling_mode := st.sidebar.selectbox(
"select a Mode", index=0, options=["Top-k Sampling", "Beam Search"]
):
if sampling_mode == "Beam Search":
num_beams = st.sidebar.number_input(
"Num beams", min_value=1, max_value=10, value=4
)
length_penalty = st.sidebar.number_input(
"Length penalty", min_value=0.0, max_value=2.0, value=1.0, step=0.1
)
params = {
"max_length": max_length,
"no_repeat_ngram_size": no_repeat_ngram_size,
"repetition_penalty": repetition_penalty,
"num_return_sequences": num_return_sequences,
"num_beams": num_beams,
"early_stopping": True,
"length_penalty": length_penalty,
}
else:
top_k = st.sidebar.number_input(
"Top K", min_value=0, max_value=100, value=50
)
top_p = st.sidebar.number_input(
"Top P", min_value=0.0, max_value=1.0, value=0.95, step=0.05
)
temperature = st.sidebar.number_input(
"Temperature", min_value=0.05, max_value=1.0, value=1.0, step=0.05
)
params = {
"max_length": max_length,
"no_repeat_ngram_size": no_repeat_ngram_size,
"repetition_penalty": repetition_penalty,
"num_return_sequences": num_return_sequences,
"do_sample": True,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
}
st.sidebar.markdown(
"""For an explanation of the parameters, head over to the [Huggingface blog post about text generation](https://huggingface.co/blog/how-to-generate)
and the [Huggingface text generation interface doc](https://huggingface.co/transformers/main_classes/model.html?highlight=generate#transformers.generation_utils.GenerationMixin.generate).
"""
)
if st.button("Run"):
estimate = max_length / 18
if device == -1:
## cpu
estimate = estimate * (1 + 0.7 * (num_return_sequences - 1))
if sampling_mode == "Beam Search":
estimate = estimate * (1.1 + 0.3 * (num_beams - 1))
else:
## gpu
estimate = estimate * (1 + 0.1 * (num_return_sequences - 1))
estimate = 0.5 + estimate / 5
if sampling_mode == "Beam Search":
estimate = estimate * (1.0 + 0.1 * (num_beams - 1))
estimate = int(estimate)
with st.spinner(
text=f"Please wait ~ {estimate} second{'s' if estimate != 1 else ''} while getting results ..."
):
memory = psutil.virtual_memory()
generator = generators.get_generator(model_desc)
set_seed(seed)
time_start = time.time()
result = generator.get_text(text=st.session_state.text, **params)
time_end = time.time()
time_diff = time_end - time_start
st.subheader("Result")
for text in result:
st.write(text.get("generated_text").replace("\n", " \n"))
# st.text("*Translation*")
# translation = translate(result, "en", "nl")
# st.write(translation.replace("\n", " \n"))
#
info = f"""
---
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*
*Text generated using seed {seed} in {time_diff:.5} seconds*
"""
st.write(info)
params["seed"] = seed
params["prompt"] = st.session_state.text
params["model"] = generator.model_name
params_text = json.dumps(params)
print(params_text)
st.json(params_text)
if __name__ == "__main__":
main()