from functools import partial import numpy as np import torch import torch.nn as nn from modules.layers.simswap.pg_modules.blocks import DownBlock, DownBlockPatch, conv2d from modules.layers.simswap.pg_modules.projector import F_RandomProj from modules.layers.simswap.pg_modules.diffaug import DiffAugment class SingleDisc(nn.Module): def __init__(self, nc=None, ndf=None, start_sz=256, end_sz=8, head=None, separable=False, patch=False): super().__init__() channel_dict = {4: 512, 8: 512, 16: 256, 32: 128, 64: 64, 128: 64, 256: 32, 512: 16, 1024: 8} # interpolate for start sz that are not powers of two if start_sz not in channel_dict.keys(): sizes = np.array(list(channel_dict.keys())) start_sz = sizes[np.argmin(abs(sizes - start_sz))] self.start_sz = start_sz # if given ndf, allocate all layers with the same ndf if ndf is None: nfc = channel_dict else: nfc = {k: ndf for k, v in channel_dict.items()} # for feature map discriminators with nfc not in channel_dict # this is the case for the pretrained backbone (midas.pretrained) if nc is not None and head is None: nfc[start_sz] = nc layers = [] # Head if the initial input is the full modality if head: layers += [conv2d(nc, nfc[256], 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True)] # Down Blocks DB = partial(DownBlockPatch, separable=separable) if patch else partial(DownBlock, separable=separable) while start_sz > end_sz: layers.append(DB(nfc[start_sz], nfc[start_sz//2])) start_sz = start_sz // 2 layers.append(conv2d(nfc[end_sz], 1, 4, 1, 0, bias=False)) self.main = nn.Sequential(*layers) def forward(self, x, c): return self.main(x) class SingleDiscCond(nn.Module): def __init__(self, nc=None, ndf=None, start_sz=256, end_sz=8, head=None, separable=False, patch=False, c_dim=1000, cmap_dim=64, embedding_dim=128): super().__init__() self.cmap_dim = cmap_dim # midas channels channel_dict = {4: 512, 8: 512, 16: 256, 32: 128, 64: 64, 128: 64, 256: 32, 512: 16, 1024: 8} # interpolate for start sz that are not powers of two if start_sz not in channel_dict.keys(): sizes = np.array(list(channel_dict.keys())) start_sz = sizes[np.argmin(abs(sizes - start_sz))] self.start_sz = start_sz # if given ndf, allocate all layers with the same ndf if ndf is None: nfc = channel_dict else: nfc = {k: ndf for k, v in channel_dict.items()} # for feature map discriminators with nfc not in channel_dict # this is the case for the pretrained backbone (midas.pretrained) if nc is not None and head is None: nfc[start_sz] = nc layers = [] # Head if the initial input is the full modality if head: layers += [conv2d(nc, nfc[256], 3, 1, 1, bias=False), nn.LeakyReLU(0.2, inplace=True)] # Down Blocks DB = partial(DownBlockPatch, separable=separable) if patch else partial(DownBlock, separable=separable) while start_sz > end_sz: layers.append(DB(nfc[start_sz], nfc[start_sz//2])) start_sz = start_sz // 2 self.main = nn.Sequential(*layers) # additions for conditioning on class information self.cls = conv2d(nfc[end_sz], self.cmap_dim, 4, 1, 0, bias=False) self.embed = nn.Embedding(num_embeddings=c_dim, embedding_dim=embedding_dim) self.embed_proj = nn.Sequential( nn.Linear(self.embed.embedding_dim, self.cmap_dim), nn.LeakyReLU(0.2, inplace=True), ) def forward(self, x, c): h = self.main(x) out = self.cls(h) # conditioning via projection cmap = self.embed_proj(self.embed(c.argmax(1))).unsqueeze(-1).unsqueeze(-1) out = (out * cmap).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.cmap_dim)) return out class MultiScaleD(nn.Module): def __init__( self, channels, resolutions, num_discs=4, proj_type=2, # 0 = no projection, 1 = cross channel mixing, 2 = cross scale mixing cond=0, separable=False, patch=False, **kwargs, ): super().__init__() assert num_discs in [1, 2, 3, 4] # the first disc is on the lowest level of the backbone self.disc_in_channels = channels[:num_discs] self.disc_in_res = resolutions[:num_discs] Disc = SingleDiscCond if cond else SingleDisc mini_discs = [] for i, (cin, res) in enumerate(zip(self.disc_in_channels, self.disc_in_res)): start_sz = res if not patch else 16 mini_discs += [str(i), Disc(nc=cin, start_sz=start_sz, end_sz=8, separable=separable, patch=patch)], self.mini_discs = nn.ModuleDict(mini_discs) def forward(self, features, c): all_logits = [] for k, disc in self.mini_discs.items(): res = disc(features[k], c).view(features[k].size(0), -1) all_logits.append(res) all_logits = torch.cat(all_logits, dim=1) return all_logits class ProjectedDiscriminator(torch.nn.Module): def __init__( self, diffaug=True, interp224=True, backbone_kwargs={}, **kwargs ): super().__init__() self.diffaug = diffaug self.interp224 = interp224 self.feature_network = F_RandomProj(**backbone_kwargs) self.discriminator = MultiScaleD( channels=self.feature_network.CHANNELS, resolutions=self.feature_network.RESOLUTIONS, **backbone_kwargs, ) def train(self, mode=True): self.feature_network = self.feature_network.train(False) self.discriminator = self.discriminator.train(mode) return self def eval(self): return self.train(False) def get_feature(self, x): features = self.feature_network(x, get_features=True) return features def forward(self, x, c): # if self.diffaug: # x = DiffAugment(x, policy='color,translation,cutout') # if self.interp224: # x = F.interpolate(x, 224, mode='bilinear', align_corners=False) features,backbone_features = self.feature_network(x) logits = self.discriminator(features, c) return logits,backbone_features