gavinyuan
udpate: app.py import FSGenerator
a104d3f
raw
history blame
6.07 kB
import torch
import torch.nn as nn
import timm
from modules.layers.simswap.pg_modules.blocks import FeatureFusionBlock
def _make_scratch_ccm(scratch, in_channels, cout, expand=False):
# shapes
out_channels = [cout, cout*2, cout*4, cout*8] if expand else [cout]*4
scratch.layer0_ccm = nn.Conv2d(in_channels[0], out_channels[0], kernel_size=1, stride=1, padding=0, bias=True)
scratch.layer1_ccm = nn.Conv2d(in_channels[1], out_channels[1], kernel_size=1, stride=1, padding=0, bias=True)
scratch.layer2_ccm = nn.Conv2d(in_channels[2], out_channels[2], kernel_size=1, stride=1, padding=0, bias=True)
scratch.layer3_ccm = nn.Conv2d(in_channels[3], out_channels[3], kernel_size=1, stride=1, padding=0, bias=True)
scratch.CHANNELS = out_channels
return scratch
def _make_scratch_csm(scratch, in_channels, cout, expand):
scratch.layer3_csm = FeatureFusionBlock(in_channels[3], nn.ReLU(False), expand=expand, lowest=True)
scratch.layer2_csm = FeatureFusionBlock(in_channels[2], nn.ReLU(False), expand=expand)
scratch.layer1_csm = FeatureFusionBlock(in_channels[1], nn.ReLU(False), expand=expand)
scratch.layer0_csm = FeatureFusionBlock(in_channels[0], nn.ReLU(False))
# last refinenet does not expand to save channels in higher dimensions
scratch.CHANNELS = [cout, cout, cout*2, cout*4] if expand else [cout]*4
return scratch
def _make_efficientnet(model):
pretrained = nn.Module()
pretrained.layer0 = nn.Sequential(model.conv_stem, model.bn1, model.act1, *model.blocks[0:2])
pretrained.layer1 = nn.Sequential(*model.blocks[2:3])
pretrained.layer2 = nn.Sequential(*model.blocks[3:5])
pretrained.layer3 = nn.Sequential(*model.blocks[5:9])
return pretrained
def calc_channels(pretrained, inp_res=224):
channels = []
tmp = torch.zeros(1, 3, inp_res, inp_res)
# forward pass
tmp = pretrained.layer0(tmp)
channels.append(tmp.shape[1])
tmp = pretrained.layer1(tmp)
channels.append(tmp.shape[1])
tmp = pretrained.layer2(tmp)
channels.append(tmp.shape[1])
tmp = pretrained.layer3(tmp)
channels.append(tmp.shape[1])
return channels
def _make_projector(im_res, cout, proj_type, expand=False):
assert proj_type in [0, 1, 2], "Invalid projection type"
### Build pretrained feature network
model = timm.create_model('tf_efficientnet_lite0', pretrained=False,
checkpoint_path='/gavin/code/FaceSwapping/modules/third_party/efficientnet/'
'tf_efficientnet_lite0-0aa007d2.pth')
pretrained = _make_efficientnet(model)
# determine resolution of feature maps, this is later used to calculate the number
# of down blocks in the discriminators. Interestingly, the best results are achieved
# by fixing this to 256, ie., we use the same number of down blocks per discriminator
# independent of the dataset resolution
im_res = 256
pretrained.RESOLUTIONS = [im_res//4, im_res//8, im_res//16, im_res//32]
pretrained.CHANNELS = calc_channels(pretrained)
if proj_type == 0: return pretrained, None
### Build CCM
scratch = nn.Module()
scratch = _make_scratch_ccm(scratch, in_channels=pretrained.CHANNELS, cout=cout, expand=expand)
pretrained.CHANNELS = scratch.CHANNELS
if proj_type == 1: return pretrained, scratch
### build CSM
scratch = _make_scratch_csm(scratch, in_channels=scratch.CHANNELS, cout=cout, expand=expand)
# CSM upsamples x2 so the feature map resolution doubles
pretrained.RESOLUTIONS = [res*2 for res in pretrained.RESOLUTIONS]
pretrained.CHANNELS = scratch.CHANNELS
return pretrained, scratch
class F_RandomProj(nn.Module):
def __init__(
self,
im_res=256,
cout=64,
expand=True,
proj_type=2, # 0 = no projection, 1 = cross channel mixing, 2 = cross scale mixing
**kwargs,
):
super().__init__()
self.proj_type = proj_type
self.cout = cout
self.expand = expand
# build pretrained feature network and random decoder (scratch)
self.pretrained, self.scratch = _make_projector(im_res=im_res, cout=self.cout, proj_type=self.proj_type, expand=self.expand)
self.CHANNELS = self.pretrained.CHANNELS
self.RESOLUTIONS = self.pretrained.RESOLUTIONS
def forward(self, x, get_features=False):
# predict feature maps
out0 = self.pretrained.layer0(x)
out1 = self.pretrained.layer1(out0)
out2 = self.pretrained.layer2(out1)
out3 = self.pretrained.layer3(out2)
# start enumerating at the lowest layer (this is where we put the first discriminator)
backbone_features = {
'0': out0,
'1': out1,
'2': out2,
'3': out3,
}
if get_features:
return backbone_features
if self.proj_type == 0: return backbone_features
out0_channel_mixed = self.scratch.layer0_ccm(backbone_features['0'])
out1_channel_mixed = self.scratch.layer1_ccm(backbone_features['1'])
out2_channel_mixed = self.scratch.layer2_ccm(backbone_features['2'])
out3_channel_mixed = self.scratch.layer3_ccm(backbone_features['3'])
out = {
'0': out0_channel_mixed,
'1': out1_channel_mixed,
'2': out2_channel_mixed,
'3': out3_channel_mixed,
}
if self.proj_type == 1: return out
# from bottom to top
out3_scale_mixed = self.scratch.layer3_csm(out3_channel_mixed)
out2_scale_mixed = self.scratch.layer2_csm(out3_scale_mixed, out2_channel_mixed)
out1_scale_mixed = self.scratch.layer1_csm(out2_scale_mixed, out1_channel_mixed)
out0_scale_mixed = self.scratch.layer0_csm(out1_scale_mixed, out0_channel_mixed)
out = {
'0': out0_scale_mixed,
'1': out1_scale_mixed,
'2': out2_scale_mixed,
'3': out3_scale_mixed,
}
return out, backbone_features