Spaces:
Runtime error
Runtime error
yeungchenwa
commited on
Commit
·
508b842
1
Parent(s):
43b3c60
[Update] Add files and checkpoint
Browse files- .gitattributes +2 -0
- .gitignore +180 -0
- app.py +147 -0
- ckpt/content_encoder.pth +3 -0
- ckpt/style_encoder.pth +3 -0
- ckpt/unet.pth +3 -0
- configs/fontdiffuser.py +87 -0
- dataset/font_dataset.py +69 -0
- figures/ref_imgs/ref_/345/243/244.jpg +0 -0
- figures/ref_imgs/ref_/345/252/232.jpg +0 -0
- figures/ref_imgs/ref_/346/252/200.jpg +0 -0
- figures/ref_imgs/ref_/346/254/237.jpg +0 -0
- figures/ref_imgs/ref_/347/251/227.jpg +0 -0
- figures/ref_imgs/ref_/347/261/215.jpg +0 -0
- figures/ref_imgs/ref_/347/261/215_1.jpg +0 -0
- figures/ref_imgs/ref_/350/234/223.jpg +0 -0
- figures/ref_imgs/ref_/350/261/204.jpg +0 -0
- figures/ref_imgs/ref_/351/227/241.jpg +0 -0
- figures/ref_imgs/ref_/351/233/225.jpg +0 -0
- figures/ref_imgs/ref_/351/236/243.jpg +0 -0
- figures/ref_imgs/ref_/351/246/250.jpg +0 -0
- figures/ref_imgs/ref_/351/262/270.jpg +0 -0
- figures/ref_imgs/ref_/351/267/242.jpg +0 -0
- figures/ref_imgs/ref_/351/271/260.jpg +0 -0
- figures/source_imgs/source_/347/201/250.jpg +0 -0
- figures/source_imgs/source_/351/207/205.jpg +0 -0
- figures/source_imgs/source_/351/221/253.jpg +0 -0
- figures/source_imgs/source_/351/221/273.jpg +0 -0
- requirements.txt +5 -0
- sample.py +252 -0
- src/.DS_Store +0 -0
- src/__init__.py +11 -0
- src/build.py +64 -0
- src/criterion.py +44 -0
- src/dpm_solver/dpm_solver_pytorch.py +1332 -0
- src/dpm_solver/pipeline_dpm_solver.py +117 -0
- src/model.py +110 -0
- src/modules/__init__.py +3 -0
- src/modules/attention.py +414 -0
- src/modules/content_encoder.py +435 -0
- src/modules/embeddings.py +84 -0
- src/modules/resnet.py +353 -0
- src/modules/style_encoder.py +442 -0
- src/modules/unet.py +299 -0
- src/modules/unet_blocks.py +661 -0
- ttf/KaiXinSongA.ttf +3 -0
- ttf/KaiXinSongB.ttf +3 -0
- utils.py +123 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
ttf/KaiXinSongA.ttf filter=lfs diff=lfs merge=lfs -text
|
37 |
+
ttf/KaiXinSongB.ttf filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Initially taken from GitHub's Python gitignore file
|
2 |
+
outputs/
|
3 |
+
run_sh/
|
4 |
+
|
5 |
+
# Byte-compiled / optimized / DLL files
|
6 |
+
__pycache__/
|
7 |
+
*.py[cod]
|
8 |
+
*$py.class
|
9 |
+
|
10 |
+
# C extensions
|
11 |
+
*.so
|
12 |
+
|
13 |
+
# tests and logs
|
14 |
+
tests/fixtures/cached_*_text.txt
|
15 |
+
logs/
|
16 |
+
lightning_logs/
|
17 |
+
lang_code_data/
|
18 |
+
|
19 |
+
# Distribution / packaging
|
20 |
+
.Python
|
21 |
+
build/
|
22 |
+
develop-eggs/
|
23 |
+
dist/
|
24 |
+
downloads/
|
25 |
+
eggs/
|
26 |
+
.eggs/
|
27 |
+
lib/
|
28 |
+
lib64/
|
29 |
+
parts/
|
30 |
+
sdist/
|
31 |
+
var/
|
32 |
+
wheels/
|
33 |
+
*.egg-info/
|
34 |
+
.installed.cfg
|
35 |
+
*.egg
|
36 |
+
MANIFEST
|
37 |
+
|
38 |
+
# PyInstaller
|
39 |
+
# Usually these files are written by a Python script from a template
|
40 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
41 |
+
*.manifest
|
42 |
+
*.spec
|
43 |
+
|
44 |
+
# Installer logs
|
45 |
+
pip-log.txt
|
46 |
+
pip-delete-this-directory.txt
|
47 |
+
|
48 |
+
# Unit test / coverage reports
|
49 |
+
htmlcov/
|
50 |
+
.tox/
|
51 |
+
.nox/
|
52 |
+
.coverage
|
53 |
+
.coverage.*
|
54 |
+
.cache
|
55 |
+
nosetests.xml
|
56 |
+
coverage.xml
|
57 |
+
*.cover
|
58 |
+
.hypothesis/
|
59 |
+
.pytest_cache/
|
60 |
+
|
61 |
+
# Translations
|
62 |
+
*.mo
|
63 |
+
*.pot
|
64 |
+
|
65 |
+
# Django stuff:
|
66 |
+
*.log
|
67 |
+
local_settings.py
|
68 |
+
db.sqlite3
|
69 |
+
|
70 |
+
# Flask stuff:
|
71 |
+
instance/
|
72 |
+
.webassets-cache
|
73 |
+
|
74 |
+
# Scrapy stuff:
|
75 |
+
.scrapy
|
76 |
+
|
77 |
+
# Sphinx documentation
|
78 |
+
docs/_build/
|
79 |
+
|
80 |
+
# PyBuilder
|
81 |
+
target/
|
82 |
+
|
83 |
+
# Jupyter Notebook
|
84 |
+
.ipynb_checkpoints
|
85 |
+
|
86 |
+
# IPython
|
87 |
+
profile_default/
|
88 |
+
ipython_config.py
|
89 |
+
|
90 |
+
# pyenv
|
91 |
+
.python-version
|
92 |
+
|
93 |
+
# celery beat schedule file
|
94 |
+
celerybeat-schedule
|
95 |
+
|
96 |
+
# SageMath parsed files
|
97 |
+
*.sage.py
|
98 |
+
|
99 |
+
# Environments
|
100 |
+
.env
|
101 |
+
.venv
|
102 |
+
env/
|
103 |
+
venv/
|
104 |
+
ENV/
|
105 |
+
env.bak/
|
106 |
+
venv.bak/
|
107 |
+
|
108 |
+
# Spyder project settings
|
109 |
+
.spyderproject
|
110 |
+
.spyproject
|
111 |
+
|
112 |
+
# Rope project settings
|
113 |
+
.ropeproject
|
114 |
+
|
115 |
+
# mkdocs documentation
|
116 |
+
/site
|
117 |
+
|
118 |
+
# mypy
|
119 |
+
.mypy_cache/
|
120 |
+
.dmypy.json
|
121 |
+
dmypy.json
|
122 |
+
|
123 |
+
# Pyre type checker
|
124 |
+
.pyre/
|
125 |
+
|
126 |
+
# vscode
|
127 |
+
.vs
|
128 |
+
.vscode
|
129 |
+
|
130 |
+
# Pycharm
|
131 |
+
.idea
|
132 |
+
|
133 |
+
# TF code
|
134 |
+
tensorflow_code
|
135 |
+
|
136 |
+
# Models
|
137 |
+
proc_data
|
138 |
+
|
139 |
+
# examples
|
140 |
+
runs
|
141 |
+
/runs_old
|
142 |
+
/wandb
|
143 |
+
/examples/runs
|
144 |
+
/examples/**/*.args
|
145 |
+
/examples/rag/sweep
|
146 |
+
|
147 |
+
# data
|
148 |
+
/data
|
149 |
+
serialization_dir
|
150 |
+
|
151 |
+
# emacs
|
152 |
+
*.*~
|
153 |
+
debug.env
|
154 |
+
|
155 |
+
# vim
|
156 |
+
.*.swp
|
157 |
+
|
158 |
+
# ctags
|
159 |
+
tags
|
160 |
+
|
161 |
+
# pre-commit
|
162 |
+
.pre-commit*
|
163 |
+
|
164 |
+
# .lock
|
165 |
+
*.lock
|
166 |
+
|
167 |
+
# DS_Store (MacOS)
|
168 |
+
.DS_Store
|
169 |
+
|
170 |
+
# RL pipelines may produce mp4 outputs
|
171 |
+
*.mp4
|
172 |
+
|
173 |
+
# dependencies
|
174 |
+
/transformers
|
175 |
+
|
176 |
+
# ruff
|
177 |
+
.ruff_cache
|
178 |
+
|
179 |
+
# wandb
|
180 |
+
wandb
|
app.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import gradio as gr
|
3 |
+
from sample import (arg_parse,
|
4 |
+
sampling,
|
5 |
+
load_fontdiffuer_pipeline)
|
6 |
+
|
7 |
+
|
8 |
+
def run_fontdiffuer(source_image,
|
9 |
+
character,
|
10 |
+
reference_image,
|
11 |
+
sampling_step,
|
12 |
+
guidance_scale,
|
13 |
+
batch_size):
|
14 |
+
args.character_input = False if source_image is not None else True
|
15 |
+
args.content_character = character
|
16 |
+
args.sampling_step = sampling_step
|
17 |
+
args.guidance_scale = guidance_scale
|
18 |
+
args.batch_size = batch_size
|
19 |
+
args.seed = random.randint(0, 10000)
|
20 |
+
out_image = sampling(
|
21 |
+
args=args,
|
22 |
+
pipe=pipe,
|
23 |
+
content_image=source_image,
|
24 |
+
style_image=reference_image)
|
25 |
+
return out_image
|
26 |
+
|
27 |
+
|
28 |
+
if __name__ == '__main__':
|
29 |
+
args = arg_parse()
|
30 |
+
args.demo = True
|
31 |
+
args.ckpt_dir = 'ckpt'
|
32 |
+
args.ttf_path = 'ttf/KaiXinSongA.ttf'
|
33 |
+
|
34 |
+
# load fontdiffuer pipeline
|
35 |
+
pipe = load_fontdiffuer_pipeline(args=args)
|
36 |
+
|
37 |
+
with gr.Blocks() as demo:
|
38 |
+
with gr.Row():
|
39 |
+
with gr.Column(scale=1):
|
40 |
+
gr.HTML("""
|
41 |
+
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
|
42 |
+
<h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
|
43 |
+
FontDiffuser
|
44 |
+
</h1>
|
45 |
+
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
46 |
+
<a href="https://yeungchenwa.github.io/"">Zhenhua Yang</a>,
|
47 |
+
<a href="https://scholar.google.com/citations?user=6zNgcjAAAAAJ&hl=zh-CN&oi=ao"">Dezhi Peng</a>,
|
48 |
+
Yuxin Kong, Yuyi Zhang,
|
49 |
+
<a href="https://scholar.google.com/citations?user=IpmnLFcAAAAJ&hl=zh-CN&oi=ao"">Cong Yao</a>,
|
50 |
+
<a href="http://www.dlvc-lab.net/lianwen/Index.html"">Lianwen Jin</a>†
|
51 |
+
</h2>
|
52 |
+
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
53 |
+
<strong>South China University of Technology</strong>, Alibaba DAMO Academy
|
54 |
+
</h2>
|
55 |
+
<h3 style="font-weight: 450; font-size: 1rem; margin: 0rem">
|
56 |
+
[<a href="https://github.com/yeungchenwa/FontDiffuser" style="color:blue;">arXiv</a>]
|
57 |
+
[<a href="https://github.com/yeungchenwa/FontDiffuser" style="color:green;">Github</a>]
|
58 |
+
</h3>
|
59 |
+
<h2 style="text-align: left; font-weight: 600; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
|
60 |
+
1.We propose FontDiffuser, which is capable to generate unseen characters and styles, and it can be extended to the cross-lingual generation, such as Chinese to Korean.
|
61 |
+
</h2>
|
62 |
+
<h2 style="text-align: left; font-weight: 600; font-size: 1rem; margin-top: 0.5rem; margin-bottom: 0.5rem">
|
63 |
+
2. FontDiffuser excels in generating complex character and handling large style variation. And it achieves state-of-the-art performance.
|
64 |
+
</h2>
|
65 |
+
</div>
|
66 |
+
""")
|
67 |
+
gr.Image('figures/result_vis.png')
|
68 |
+
gr.Image('figures/demo_tips.png')
|
69 |
+
with gr.Column(scale=1):
|
70 |
+
with gr.Row():
|
71 |
+
source_image = gr.Image(width=320, label='[Option 1] Source Image', image_mode='RGB', type='pil')
|
72 |
+
reference_image = gr.Image(width=320, label='Reference Image', image_mode='RGB', type='pil')
|
73 |
+
with gr.Row():
|
74 |
+
character = gr.Textbox(value='隆', label='[Option 2] Source Character')
|
75 |
+
with gr.Row():
|
76 |
+
fontdiffuer_output_image = gr.Image(height=200, label="FontDiffuser Output Image", image_mode='RGB', type='pil')
|
77 |
+
|
78 |
+
sampling_step = gr.Slider(20, 50, value=20, step=10,
|
79 |
+
label="Sampling Step", info="The sampling step by FontDiffuser.")
|
80 |
+
guidance_scale = gr.Slider(1, 12, value=7.5, step=0.5,
|
81 |
+
label="Scale of Classifier-free Guidance",
|
82 |
+
info="The scale used for classifier-free guidance sampling")
|
83 |
+
batch_size = gr.Slider(1, 4, value=1, step=1,
|
84 |
+
label="Batch Size", info="The number of images to be sampled.")
|
85 |
+
|
86 |
+
FontDiffuser = gr.Button('Run FontDiffuser')
|
87 |
+
gr.Markdown("## <font color=#008000, size=6>Examples that You Can Choose Below⬇️</font>")
|
88 |
+
with gr.Row():
|
89 |
+
gr.Markdown("## Examples")
|
90 |
+
with gr.Row():
|
91 |
+
with gr.Column(scale=1):
|
92 |
+
gr.Markdown("## Example 1️⃣: Source Image and Reference Image")
|
93 |
+
gr.Markdown("### In this mode, we provide both the source image and \
|
94 |
+
the reference image for you to try our demo!")
|
95 |
+
gr.Examples(
|
96 |
+
examples=[['figures/source_imgs/source_灨.jpg', 'figures/ref_imgs/ref_籍.jpg'],
|
97 |
+
['figures/source_imgs/source_鑻.jpg', 'figures/ref_imgs/ref_鹰.jpg'],
|
98 |
+
['figures/source_imgs/source_鑫.jpg', 'figures/ref_imgs/ref_壤.jpg'],
|
99 |
+
['figures/source_imgs/source_釅.jpg', 'figures/ref_imgs/ref_雕.jpg']],
|
100 |
+
inputs=[source_image, reference_image]
|
101 |
+
)
|
102 |
+
with gr.Column(scale=1):
|
103 |
+
gr.Markdown("## Example 2️⃣: Character and Reference Image")
|
104 |
+
gr.Markdown("### In this mode, we provide the content character and the reference image \
|
105 |
+
for you to try our demo!")
|
106 |
+
gr.Examples(
|
107 |
+
examples=[['龍', 'figures/ref_imgs/ref_鷢.jpg'],
|
108 |
+
['轉', 'figures/ref_imgs/ref_鲸.jpg'],
|
109 |
+
['懭', 'figures/ref_imgs/ref_籍_1.jpg'],
|
110 |
+
['識', 'figures/ref_imgs/ref_鞣.jpg']],
|
111 |
+
inputs=[character, reference_image]
|
112 |
+
)
|
113 |
+
with gr.Column(scale=1):
|
114 |
+
gr.Markdown("## Example 3️⃣: Reference Image")
|
115 |
+
gr.Markdown("### In this mode, we provide only the reference image, \
|
116 |
+
you can upload your own source image or you choose the character above \
|
117 |
+
to try our demo!")
|
118 |
+
gr.Examples(
|
119 |
+
examples=['figures/ref_imgs/ref_闡.jpg',
|
120 |
+
'figures/ref_imgs/ref_雕.jpg',
|
121 |
+
'figures/ref_imgs/ref_豄.jpg',
|
122 |
+
'figures/ref_imgs/ref_馨.jpg',
|
123 |
+
'figures/ref_imgs/ref_鲸.jpg',
|
124 |
+
'figures/ref_imgs/ref_檀.jpg',
|
125 |
+
'figures/ref_imgs/ref_鞣.jpg',
|
126 |
+
'figures/ref_imgs/ref_穗.jpg',
|
127 |
+
'figures/ref_imgs/ref_欟.jpg',
|
128 |
+
'figures/ref_imgs/ref_籍_1.jpg',
|
129 |
+
'figures/ref_imgs/ref_鷢.jpg',
|
130 |
+
'figures/ref_imgs/ref_媚.jpg',
|
131 |
+
'figures/ref_imgs/ref_籍.jpg',
|
132 |
+
'figures/ref_imgs/ref_壤.jpg',
|
133 |
+
'figures/ref_imgs/ref_蜓.jpg',
|
134 |
+
'figures/ref_imgs/ref_鹰.jpg'],
|
135 |
+
examples_per_page=20,
|
136 |
+
inputs=reference_image
|
137 |
+
)
|
138 |
+
FontDiffuser.click(
|
139 |
+
fn=run_fontdiffuer,
|
140 |
+
inputs=[source_image,
|
141 |
+
character,
|
142 |
+
reference_image,
|
143 |
+
sampling_step,
|
144 |
+
guidance_scale,
|
145 |
+
batch_size],
|
146 |
+
outputs=fontdiffuer_output_image)
|
147 |
+
demo.launch(debug=True)
|
ckpt/content_encoder.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5b52582473579031bd0f935abbb9a3e5cb3727dccc25e75f77d1f41d3cbb3ff
|
3 |
+
size 4765643
|
ckpt/style_encoder.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82eb56abc37ebf7e662d1141a45d8a54ad4bc0ee8aa749c4bb7bc7bddb6cca46
|
3 |
+
size 82410027
|
ckpt/unet.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6bde1920ac8d843edbfffa6e6befedc5da39f753b927ce272cfc85cf99dcbfdb
|
3 |
+
size 315147685
|
configs/fontdiffuser.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
|
4 |
+
def get_parser():
|
5 |
+
parser = argparse.ArgumentParser(description="Training config for FontDiffuser.")
|
6 |
+
################# Experience #################
|
7 |
+
parser.add_argument("--seed", type=int, default=123, help="A seed for reproducible training.")
|
8 |
+
parser.add_argument("--experience_name", type=str, default="fontdiffuer_training")
|
9 |
+
parser.add_argument("--data_root", type=str, default=None,
|
10 |
+
help="The font dataset root path.",)
|
11 |
+
parser.add_argument("--output_dir", type=str, default=None,
|
12 |
+
help="The output directory where the model predictions and checkpoints will be written.")
|
13 |
+
parser.add_argument("--report_to", type=str, default="tensorboard")
|
14 |
+
parser.add_argument("--logging_dir", type=str, default="logs",
|
15 |
+
help=("[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
16 |
+
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."))
|
17 |
+
|
18 |
+
# Model
|
19 |
+
parser.add_argument("--resolution", type=int, default=96,
|
20 |
+
help="The resolution for input images, all the images in the train/validation \
|
21 |
+
dataset will be resized to this.")
|
22 |
+
parser.add_argument("--unet_channels", type=tuple, default=(64, 128, 256, 512),
|
23 |
+
help="The channels of the UNet.")
|
24 |
+
parser.add_argument("--style_image_size", type=int, default=96, help="The size of style images.")
|
25 |
+
parser.add_argument("--content_image_size", type=int, default=96, help="The size of content images.")
|
26 |
+
parser.add_argument("--content_encoder_downsample_size", type=int, default=3,
|
27 |
+
help="The downsample size of the content encoder.")
|
28 |
+
parser.add_argument("--channel_attn", type=bool, default=True, help="Whether to use the se attention.",)
|
29 |
+
parser.add_argument("--content_start_channel", type=int, default=64,
|
30 |
+
help="The channels of the fisrt layer output of content encoder.",)
|
31 |
+
parser.add_argument("--style_start_channel", type=int, default=64,
|
32 |
+
help="The channels of the fisrt layer output of content encoder.",)
|
33 |
+
|
34 |
+
# Training
|
35 |
+
parser.add_argument("--train_batch_size", type=int, default=4,
|
36 |
+
help="Batch size (per device) for the training dataloader.")
|
37 |
+
## loss coefficient
|
38 |
+
parser.add_argument("--perceptual_coefficient", type=float, default=0.01)
|
39 |
+
parser.add_argument("--offset_coefficient", type=float, default=0.5)
|
40 |
+
## step
|
41 |
+
parser.add_argument("--max_train_steps", type=int, default=440000,
|
42 |
+
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",)
|
43 |
+
parser.add_argument("--ckpt_interval", type=int,default=40000, help="The step begin to validate.")
|
44 |
+
parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
|
45 |
+
help="Number of updates steps to accumulate before performing a backward/update pass.",)
|
46 |
+
parser.add_argument("--log_interval", type=int, default=100, help="The log interval of training.")
|
47 |
+
## learning rate
|
48 |
+
parser.add_argument("--learning_rate", type=float, default=1e-4,
|
49 |
+
help="Initial learning rate (after the potential warmup period) to use.")
|
50 |
+
parser.add_argument("--scale_lr", action="store_true", default=False,
|
51 |
+
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.")
|
52 |
+
parser.add_argument("--lr_scheduler", type=str, default="linear",
|
53 |
+
help="The scheduler type to use. Choose between 'linear', 'cosine', \
|
54 |
+
'cosine_with_restarts', 'polynomial', 'constant', 'constant_with_warmup'")
|
55 |
+
parser.add_argument("--lr_warmup_steps", type=int, default=10000,
|
56 |
+
help="Number of steps for the warmup in the lr scheduler.")
|
57 |
+
## classifier-free
|
58 |
+
parser.add_argument("--drop_prob", type=float, default=0.1, help="The uncondition training drop out probability.")
|
59 |
+
## scheduler
|
60 |
+
parser.add_argument("--beta_scheduler", type=str, default="scaled_linear", help="The beta scheduler for DDPM.")
|
61 |
+
## optimizer
|
62 |
+
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
63 |
+
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
64 |
+
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
65 |
+
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
66 |
+
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
67 |
+
|
68 |
+
parser.add_argument("--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"],
|
69 |
+
help="Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires \
|
70 |
+
PyTorch >= 1.10. and an Nvidia Ampere GPU.")
|
71 |
+
|
72 |
+
# Sampling
|
73 |
+
parser.add_argument("--algorithm_type", type=str, default="dpmsolver++", help="Algorithm for sampleing.")
|
74 |
+
parser.add_argument("--guidance_type", type=str, default="classifier-free", help="Guidance type of sampling.")
|
75 |
+
parser.add_argument("--guidance_scale", type=float, default=7.5, help="Guidance scale of the classifier-free mode.")
|
76 |
+
parser.add_argument("--num_inference_steps", type=int, default=20, help="Sampling step.")
|
77 |
+
parser.add_argument("--model_type", type=str, default="noise", help="model_type for sampling.")
|
78 |
+
parser.add_argument("--order", type=int, default=2, help="The order of the dpmsolver.")
|
79 |
+
parser.add_argument("--skip_type", type=str, default="time_uniform", help="Skip type of dpmsolver.")
|
80 |
+
parser.add_argument("--method", type=str, default="multistep", help="Multistep of dpmsolver.")
|
81 |
+
parser.add_argument("--correcting_x0_fn", type=str, default=None, help="correcting_x0_fn of dpmsolver.")
|
82 |
+
parser.add_argument("--t_start", type=str, default=None, help="t_start of dpmsolver.")
|
83 |
+
parser.add_argument("--t_end", type=str, default=None, help="t_end of dpmsolver.")
|
84 |
+
|
85 |
+
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
86 |
+
|
87 |
+
return parser
|
dataset/font_dataset.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
import torchvision.transforms as transforms
|
7 |
+
|
8 |
+
def get_nonorm_transform(resolution):
|
9 |
+
nonorm_transform = transforms.Compose(
|
10 |
+
[transforms.Resize((resolution, resolution),
|
11 |
+
interpolation=transforms.InterpolationMode.BILINEAR),
|
12 |
+
transforms.ToTensor()])
|
13 |
+
return nonorm_transform
|
14 |
+
|
15 |
+
|
16 |
+
class FontDataset(Dataset):
|
17 |
+
"""The dataset of font generation
|
18 |
+
"""
|
19 |
+
def __init__(self, args, phase, transforms=None):
|
20 |
+
super().__init__()
|
21 |
+
self.root = args.data_root
|
22 |
+
self.phase = phase
|
23 |
+
|
24 |
+
# Get Data path
|
25 |
+
self.get_path()
|
26 |
+
self.transforms = transforms
|
27 |
+
self.nonorm_transforms = get_nonorm_transform(args.resolution)
|
28 |
+
|
29 |
+
def get_path(self):
|
30 |
+
self.target_images = []
|
31 |
+
# images with related style
|
32 |
+
self.style_to_images = {}
|
33 |
+
target_image_dir = f"{self.root}/{self.phase}/TargetImage"
|
34 |
+
for style in os.listdir(target_image_dir):
|
35 |
+
images_related_style = []
|
36 |
+
for img in os.listdir(f"{target_image_dir}/{style}"):
|
37 |
+
img_path = f"{target_image_dir}/{style}/{img}"
|
38 |
+
self.target_images.append(img_path)
|
39 |
+
images_related_style.append(img_path)
|
40 |
+
self.style_to_images[style] = images_related_style
|
41 |
+
|
42 |
+
def __getitem__(self, index):
|
43 |
+
target_image_path = self.target_images[index]
|
44 |
+
target_image_name = target_image_path.split('/')[-1]
|
45 |
+
style, content = target_image_name.split('.')[0].split('+')
|
46 |
+
|
47 |
+
# Read content image
|
48 |
+
content_image_path = f"{self.root}/{self.phase}/ContentImage/{content}.jpg"
|
49 |
+
content_image = Image.open(content_image_path).convert('RGB')
|
50 |
+
|
51 |
+
# Random sample used for style image
|
52 |
+
images_related_style = self.style_to_images[style].copy()
|
53 |
+
images_related_style.remove(target_image_path)
|
54 |
+
style_image_path = random.choice(images_related_style)
|
55 |
+
style_image = Image.open(style_image_path).convert("RGB")
|
56 |
+
|
57 |
+
# Read target image
|
58 |
+
target_image = Image.open(target_image_path).convert("RGB")
|
59 |
+
nonorm_target_image = self.nonorm_transforms(target_image)
|
60 |
+
|
61 |
+
if self.transforms is not None:
|
62 |
+
content_image = self.transforms[0](content_image)
|
63 |
+
style_image = self.transforms[1](style_image)
|
64 |
+
target_image = self.transforms[2](target_image)
|
65 |
+
|
66 |
+
return content_image, style_image, target_image, nonorm_target_image, target_image_path
|
67 |
+
|
68 |
+
def __len__(self):
|
69 |
+
return len(self.target_images)
|
figures/ref_imgs/ref_/345/243/244.jpg
ADDED
figures/ref_imgs/ref_/345/252/232.jpg
ADDED
figures/ref_imgs/ref_/346/252/200.jpg
ADDED
figures/ref_imgs/ref_/346/254/237.jpg
ADDED
figures/ref_imgs/ref_/347/251/227.jpg
ADDED
figures/ref_imgs/ref_/347/261/215.jpg
ADDED
figures/ref_imgs/ref_/347/261/215_1.jpg
ADDED
figures/ref_imgs/ref_/350/234/223.jpg
ADDED
figures/ref_imgs/ref_/350/261/204.jpg
ADDED
figures/ref_imgs/ref_/351/227/241.jpg
ADDED
figures/ref_imgs/ref_/351/233/225.jpg
ADDED
figures/ref_imgs/ref_/351/236/243.jpg
ADDED
figures/ref_imgs/ref_/351/246/250.jpg
ADDED
figures/ref_imgs/ref_/351/262/270.jpg
ADDED
figures/ref_imgs/ref_/351/267/242.jpg
ADDED
figures/ref_imgs/ref_/351/271/260.jpg
ADDED
figures/source_imgs/source_/347/201/250.jpg
ADDED
figures/source_imgs/source_/351/207/205.jpg
ADDED
figures/source_imgs/source_/351/221/253.jpg
ADDED
figures/source_imgs/source_/351/221/273.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.33.1
|
2 |
+
accelerate==0.23.0
|
3 |
+
diffusers==0.22.0.dev0
|
4 |
+
gradio==4.8.0
|
5 |
+
yaml
|
sample.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import time
|
4 |
+
import random
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torchvision.transforms as transforms
|
10 |
+
from accelerate.utils import set_seed
|
11 |
+
|
12 |
+
from src import (FontDiffuserDPMPipeline,
|
13 |
+
FontDiffuserModelDPM,
|
14 |
+
build_ddpm_scheduler,
|
15 |
+
build_unet,
|
16 |
+
build_content_encoder,
|
17 |
+
build_style_encoder)
|
18 |
+
from utils import (ttf2im,
|
19 |
+
load_ttf,
|
20 |
+
is_char_in_font,
|
21 |
+
save_args_to_yaml,
|
22 |
+
save_single_image,
|
23 |
+
save_image_with_content_style)
|
24 |
+
|
25 |
+
|
26 |
+
def arg_parse():
|
27 |
+
from configs.fontdiffuser import get_parser
|
28 |
+
|
29 |
+
parser = get_parser()
|
30 |
+
parser.add_argument("--ckpt_dir", type=str, default=None)
|
31 |
+
parser.add_argument("--demo", action="store_true")
|
32 |
+
parser.add_argument("--controlnet", type=bool, default=False,
|
33 |
+
help="If in demo mode, the controlnet can be added.")
|
34 |
+
parser.add_argument("--character_input", action="store_true")
|
35 |
+
parser.add_argument("--content_character", type=str, default=None)
|
36 |
+
parser.add_argument("--content_image_path", type=str, default=None)
|
37 |
+
parser.add_argument("--style_image_path", type=str, default=None)
|
38 |
+
parser.add_argument("--save_image", action="store_true")
|
39 |
+
parser.add_argument("--save_image_dir", type=str, default=None,
|
40 |
+
help="The saving directory.")
|
41 |
+
parser.add_argument("--device", type=str, default="cuda:0")
|
42 |
+
parser.add_argument("--ttf_path", type=str, default="ttf/KaiXinSongA.ttf")
|
43 |
+
args = parser.parse_args()
|
44 |
+
style_image_size = args.style_image_size
|
45 |
+
content_image_size = args.content_image_size
|
46 |
+
args.style_image_size = (style_image_size, style_image_size)
|
47 |
+
args.content_image_size = (content_image_size, content_image_size)
|
48 |
+
|
49 |
+
return args
|
50 |
+
|
51 |
+
|
52 |
+
def image_process(args, content_image=None, style_image=None):
|
53 |
+
if not args.demo:
|
54 |
+
# Read content image and style image
|
55 |
+
if args.character_input:
|
56 |
+
assert args.content_character is not None, "The content_character should not be None."
|
57 |
+
if not is_char_in_font(font_path=args.ttf_path, char=args.content_character):
|
58 |
+
return None, None
|
59 |
+
font = load_ttf(ttf_path=args.ttf_path)
|
60 |
+
content_image = ttf2im(font=font, char=args.content_character)
|
61 |
+
content_image_pil = content_image.copy()
|
62 |
+
else:
|
63 |
+
content_image = Image.open(args.content_image_path).convert('RGB')
|
64 |
+
content_image_pil = None
|
65 |
+
style_image = Image.open(args.style_image_path).convert('RGB')
|
66 |
+
else:
|
67 |
+
assert style_image is not None, "The style image should not be None."
|
68 |
+
if args.character_input:
|
69 |
+
assert args.content_character is not None, "The content_character should not be None."
|
70 |
+
if not is_char_in_font(font_path=args.ttf_path, char=args.content_character):
|
71 |
+
return None, None
|
72 |
+
font = load_ttf(ttf_path=args.ttf_path)
|
73 |
+
content_image = ttf2im(font=font, char=args.content_character)
|
74 |
+
else:
|
75 |
+
assert content_image is not None, "The content image should not be None."
|
76 |
+
content_image_pil = None
|
77 |
+
|
78 |
+
## Dataset transform
|
79 |
+
content_inference_transforms = transforms.Compose(
|
80 |
+
[transforms.Resize(args.content_image_size, \
|
81 |
+
interpolation=transforms.InterpolationMode.BILINEAR),
|
82 |
+
transforms.ToTensor(),
|
83 |
+
transforms.Normalize([0.5], [0.5])])
|
84 |
+
style_inference_transforms = transforms.Compose(
|
85 |
+
[transforms.Resize(args.style_image_size, \
|
86 |
+
interpolation=transforms.InterpolationMode.BILINEAR),
|
87 |
+
transforms.ToTensor(),
|
88 |
+
transforms.Normalize([0.5], [0.5])])
|
89 |
+
content_image = content_inference_transforms(content_image)[None, :]
|
90 |
+
style_image = style_inference_transforms(style_image)[None, :]
|
91 |
+
|
92 |
+
return content_image, style_image, content_image_pil
|
93 |
+
|
94 |
+
def load_fontdiffuer_pipeline(args):
|
95 |
+
# Load the model state_dict
|
96 |
+
unet = build_unet(args=args)
|
97 |
+
unet.load_state_dict(torch.load(f"{args.ckpt_dir}/unet.pth"))
|
98 |
+
style_encoder = build_style_encoder(args=args)
|
99 |
+
style_encoder.load_state_dict(torch.load(f"{args.ckpt_dir}/style_encoder.pth"))
|
100 |
+
content_encoder = build_content_encoder(args=args)
|
101 |
+
content_encoder.load_state_dict(torch.load(f"{args.ckpt_dir}/content_encoder.pth"))
|
102 |
+
model = FontDiffuserModelDPM(
|
103 |
+
unet=unet,
|
104 |
+
style_encoder=style_encoder,
|
105 |
+
content_encoder=content_encoder)
|
106 |
+
model.to(args.device)
|
107 |
+
print("Loaded the model state_dict successfully!")
|
108 |
+
|
109 |
+
# Load the training ddpm_scheduler.
|
110 |
+
train_scheduler = build_ddpm_scheduler(args=args)
|
111 |
+
print("Loaded training DDPM scheduler sucessfully!")
|
112 |
+
|
113 |
+
# Load the DPM_Solver to generate the sample.
|
114 |
+
pipe = FontDiffuserDPMPipeline(
|
115 |
+
model=model,
|
116 |
+
ddpm_train_scheduler=train_scheduler,
|
117 |
+
model_type=args.model_type,
|
118 |
+
guidance_type=args.guidance_type,
|
119 |
+
guidance_scale=args.guidance_scale,
|
120 |
+
)
|
121 |
+
print("Loaded dpm_solver pipeline sucessfully!")
|
122 |
+
|
123 |
+
return pipe
|
124 |
+
|
125 |
+
|
126 |
+
def sampling(args, pipe, content_image=None, style_image=None):
|
127 |
+
if not args.demo:
|
128 |
+
os.makedirs(args.save_image_dir, exist_ok=True)
|
129 |
+
# saving sampling config
|
130 |
+
save_args_to_yaml(args=args, output_file=f"{args.save_image_dir}/sampling_config.yaml")
|
131 |
+
|
132 |
+
if args.seed:
|
133 |
+
set_seed(seed=args.seed)
|
134 |
+
|
135 |
+
content_image, style_image, content_image_pil = image_process(args=args,
|
136 |
+
content_image=content_image,
|
137 |
+
style_image=style_image)
|
138 |
+
if content_image == None:
|
139 |
+
print(f"The content_character you provided is not in the ttf. \
|
140 |
+
Please change the content_character or you can change the ttf.")
|
141 |
+
return None
|
142 |
+
|
143 |
+
with torch.no_grad():
|
144 |
+
content_image = content_image.to(args.device)
|
145 |
+
style_image = style_image.to(args.device)
|
146 |
+
print(f"Sampling by DPM-Solver++ ......")
|
147 |
+
start = time.time()
|
148 |
+
images = pipe.generate(
|
149 |
+
content_images=content_image,
|
150 |
+
style_images=style_image,
|
151 |
+
batch_size=1,
|
152 |
+
order=args.order,
|
153 |
+
num_inference_step=args.num_inference_steps,
|
154 |
+
content_encoder_downsample_size=args.content_encoder_downsample_size,
|
155 |
+
t_start=args.t_start,
|
156 |
+
t_end=args.t_end,
|
157 |
+
dm_size=args.content_image_size,
|
158 |
+
algorithm_type=args.algorithm_type,
|
159 |
+
skip_type=args.skip_type,
|
160 |
+
method=args.method,
|
161 |
+
correcting_x0_fn=args.correcting_x0_fn)
|
162 |
+
end = time.time()
|
163 |
+
|
164 |
+
if args.save_image:
|
165 |
+
print(f"Saving the image ......")
|
166 |
+
save_single_image(save_dir=args.save_image_dir, image=images[0])
|
167 |
+
if args.character_input:
|
168 |
+
save_image_with_content_style(save_dir=args.save_image_dir,
|
169 |
+
image=images[0],
|
170 |
+
content_image_pil=content_image_pil,
|
171 |
+
content_image_path=None,
|
172 |
+
style_image_path=args.style_image_path,
|
173 |
+
resolution=args.resolution)
|
174 |
+
else:
|
175 |
+
save_image_with_content_style(save_dir=args.save_image_dir,
|
176 |
+
image=images[0],
|
177 |
+
content_image_pil=None,
|
178 |
+
content_image_path=args.content_image_path,
|
179 |
+
style_image_path=args.style_image_path,
|
180 |
+
resolution=args.resolution)
|
181 |
+
print(f"Finish the sampling process, costing time {end - start}s")
|
182 |
+
return images[0]
|
183 |
+
|
184 |
+
|
185 |
+
def load_controlnet_pipeline(args,
|
186 |
+
config_path="lllyasviel/sd-controlnet-canny",
|
187 |
+
ckpt_path="runwayml/stable-diffusion-v1-5"):
|
188 |
+
from diffusers import ControlNetModel, AutoencoderKL
|
189 |
+
# load controlnet model and pipeline
|
190 |
+
from diffusers import StableDiffusionControlNetPipeline, UniPCMultistepScheduler
|
191 |
+
controlnet = ControlNetModel.from_pretrained(config_path,
|
192 |
+
torch_dtype=torch.float16,
|
193 |
+
cache_dir=f"{args.ckpt_dir}/controlnet")
|
194 |
+
print(f"Loaded ControlNet Model Successfully!")
|
195 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(ckpt_path,
|
196 |
+
controlnet=controlnet,
|
197 |
+
torch_dtype=torch.float16,
|
198 |
+
cache_dir=f"{args.ckpt_dir}/controlnet_pipeline")
|
199 |
+
# faster
|
200 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
201 |
+
pipe.enable_model_cpu_offload()
|
202 |
+
print(f"Loaded ControlNet Pipeline Successfully!")
|
203 |
+
|
204 |
+
return pipe
|
205 |
+
|
206 |
+
|
207 |
+
def controlnet(text_prompt,
|
208 |
+
pil_image,
|
209 |
+
pipe):
|
210 |
+
image = np.array(pil_image)
|
211 |
+
# get canny image
|
212 |
+
image = cv2.Canny(image=image, threshold1=100, threshold2=200)
|
213 |
+
image = image[:, :, None]
|
214 |
+
image = np.concatenate([image, image, image], axis=2)
|
215 |
+
canny_image = Image.fromarray(image)
|
216 |
+
|
217 |
+
seed = random.randint(0, 10000)
|
218 |
+
generator = torch.manual_seed(seed)
|
219 |
+
image = pipe(text_prompt,
|
220 |
+
num_inference_steps=50,
|
221 |
+
generator=generator,
|
222 |
+
image=canny_image,
|
223 |
+
output_type='pil').images[0]
|
224 |
+
return image
|
225 |
+
|
226 |
+
|
227 |
+
def load_instructpix2pix_pipeline(args,
|
228 |
+
ckpt_path="timbrooks/instruct-pix2pix"):
|
229 |
+
from diffusers import StableDiffusionInstructPix2PixPipeline, EulerAncestralDiscreteScheduler
|
230 |
+
pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(ckpt_path,
|
231 |
+
torch_dtype=torch.float16)
|
232 |
+
pipe.to(args.device)
|
233 |
+
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
234 |
+
|
235 |
+
return pipe
|
236 |
+
|
237 |
+
def instructpix2pix(pil_image, text_prompt, pipe):
|
238 |
+
image = pil_image.resize((512, 512))
|
239 |
+
seed = random.randint(0, 10000)
|
240 |
+
generator = torch.manual_seed(seed)
|
241 |
+
image = pipe(prompt=text_prompt, image=image, generator=generator,
|
242 |
+
num_inference_steps=20, image_guidance_scale=1.1).images[0]
|
243 |
+
|
244 |
+
return image
|
245 |
+
|
246 |
+
|
247 |
+
if __name__=="__main__":
|
248 |
+
args = arg_parse()
|
249 |
+
|
250 |
+
# load fontdiffuser pipeline
|
251 |
+
pipe = load_fontdiffuer_pipeline(args=args)
|
252 |
+
out_image = sampling(args=args, pipe=pipe)
|
src/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
src/__init__.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .model import (FontDiffuserModel,
|
2 |
+
FontDiffuserModelDPM)
|
3 |
+
from .criterion import ContentPerceptualLoss
|
4 |
+
from .dpm_solver.pipeline_dpm_solver import FontDiffuserDPMPipeline
|
5 |
+
from .modules import (ContentEncoder,
|
6 |
+
StyleEncoder,
|
7 |
+
UNet)
|
8 |
+
from .build import (build_unet,
|
9 |
+
build_ddpm_scheduler,
|
10 |
+
build_style_encoder,
|
11 |
+
build_content_encoder)
|
src/build.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
|
2 |
+
from src import (ContentEncoder,
|
3 |
+
StyleEncoder,
|
4 |
+
UNet)
|
5 |
+
|
6 |
+
|
7 |
+
def build_unet(args):
|
8 |
+
unet = UNet(
|
9 |
+
sample_size=args.resolution,
|
10 |
+
in_channels=3,
|
11 |
+
out_channels=3,
|
12 |
+
flip_sin_to_cos=True,
|
13 |
+
freq_shift=0,
|
14 |
+
down_block_types=('DownBlock2D',
|
15 |
+
'MCADownBlock2D',
|
16 |
+
'MCADownBlock2D',
|
17 |
+
'DownBlock2D'),
|
18 |
+
up_block_types=('UpBlock2D',
|
19 |
+
'StyleRSIUpBlock2D',
|
20 |
+
'StyleRSIUpBlock2D',
|
21 |
+
'UpBlock2D'),
|
22 |
+
block_out_channels=args.unet_channels,
|
23 |
+
layers_per_block=2,
|
24 |
+
downsample_padding=1,
|
25 |
+
mid_block_scale_factor=1,
|
26 |
+
act_fn='silu',
|
27 |
+
norm_num_groups=32,
|
28 |
+
norm_eps=1e-05,
|
29 |
+
cross_attention_dim=args.style_start_channel * 16,
|
30 |
+
attention_head_dim=1,
|
31 |
+
channel_attn=args.channel_attn,
|
32 |
+
content_encoder_downsample_size=args.content_encoder_downsample_size,
|
33 |
+
content_start_channel=args.content_start_channel,
|
34 |
+
reduction=32)
|
35 |
+
|
36 |
+
return unet
|
37 |
+
|
38 |
+
|
39 |
+
def build_style_encoder(args):
|
40 |
+
style_image_encoder = StyleEncoder(
|
41 |
+
G_ch=args.style_start_channel,
|
42 |
+
resolution=args.style_image_size[0])
|
43 |
+
print("Get CG-GAN Style Encoder!")
|
44 |
+
return style_image_encoder
|
45 |
+
|
46 |
+
|
47 |
+
def build_content_encoder(args):
|
48 |
+
content_image_encoder = ContentEncoder(
|
49 |
+
G_ch=args.content_start_channel,
|
50 |
+
resolution=args.content_image_size[0])
|
51 |
+
print("Get CG-GAN Content Encoder!")
|
52 |
+
return content_image_encoder
|
53 |
+
|
54 |
+
|
55 |
+
def build_ddpm_scheduler(args):
|
56 |
+
ddpm_scheduler = DDPMScheduler(
|
57 |
+
num_train_timesteps=1000,
|
58 |
+
beta_start=0.0001,
|
59 |
+
beta_end=0.02,
|
60 |
+
beta_schedule=args.beta_scheduler,
|
61 |
+
trained_betas=None,
|
62 |
+
variance_type="fixed_small",
|
63 |
+
clip_sample=True)
|
64 |
+
return ddpm_scheduler
|
src/criterion.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision
|
4 |
+
|
5 |
+
|
6 |
+
class VGG16(nn.Module):
|
7 |
+
def __init__(self):
|
8 |
+
super(VGG16, self).__init__()
|
9 |
+
vgg16 = torchvision.models.vgg16(pretrained=True)
|
10 |
+
|
11 |
+
self.enc_1 = nn.Sequential(*vgg16.features[:5])
|
12 |
+
self.enc_2 = nn.Sequential(*vgg16.features[5:10])
|
13 |
+
self.enc_3 = nn.Sequential(*vgg16.features[10:17])
|
14 |
+
|
15 |
+
for i in range(3):
|
16 |
+
for param in getattr(self, f'enc_{i+1:d}').parameters():
|
17 |
+
param.requires_grad = False
|
18 |
+
|
19 |
+
def forward(self, image):
|
20 |
+
results = [image]
|
21 |
+
for i in range(3):
|
22 |
+
func = getattr(self, f'enc_{i+1:d}')
|
23 |
+
results.append(func(results[-1]))
|
24 |
+
return results[1:]
|
25 |
+
|
26 |
+
|
27 |
+
class ContentPerceptualLoss(nn.Module):
|
28 |
+
|
29 |
+
def __init__(self):
|
30 |
+
super().__init__()
|
31 |
+
self.VGG = VGG16()
|
32 |
+
|
33 |
+
def calculate_loss(self, generated_images, target_images, device):
|
34 |
+
self.VGG = self.VGG.to(device)
|
35 |
+
|
36 |
+
generated_features = self.VGG(generated_images)
|
37 |
+
target_features = self.VGG(target_images)
|
38 |
+
|
39 |
+
perceptual_loss = 0
|
40 |
+
perceptual_loss += torch.mean((target_features[0] - generated_features[0]) ** 2)
|
41 |
+
perceptual_loss += torch.mean((target_features[1] - generated_features[1]) ** 2)
|
42 |
+
perceptual_loss += torch.mean((target_features[2] - generated_features[2]) ** 2)
|
43 |
+
perceptual_loss /= 3
|
44 |
+
return perceptual_loss
|
src/dpm_solver/dpm_solver_pytorch.py
ADDED
@@ -0,0 +1,1332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import math
|
4 |
+
|
5 |
+
|
6 |
+
class NoiseScheduleVP:
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
schedule='discrete',
|
10 |
+
betas=None,
|
11 |
+
alphas_cumprod=None,
|
12 |
+
continuous_beta_0=0.1,
|
13 |
+
continuous_beta_1=20.,
|
14 |
+
dtype=torch.float32,
|
15 |
+
):
|
16 |
+
"""Create a wrapper class for the forward SDE (VP type).
|
17 |
+
|
18 |
+
***
|
19 |
+
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
20 |
+
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
21 |
+
***
|
22 |
+
|
23 |
+
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
24 |
+
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
25 |
+
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
26 |
+
|
27 |
+
log_alpha_t = self.marginal_log_mean_coeff(t)
|
28 |
+
sigma_t = self.marginal_std(t)
|
29 |
+
lambda_t = self.marginal_lambda(t)
|
30 |
+
|
31 |
+
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
32 |
+
|
33 |
+
t = self.inverse_lambda(lambda_t)
|
34 |
+
|
35 |
+
===============================================================
|
36 |
+
|
37 |
+
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
38 |
+
|
39 |
+
1. For discrete-time DPMs:
|
40 |
+
|
41 |
+
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
42 |
+
t_i = (i + 1) / N
|
43 |
+
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
44 |
+
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
48 |
+
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
49 |
+
|
50 |
+
Note that we always have alphas_cumprod = cumprod(1 - betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
51 |
+
|
52 |
+
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
53 |
+
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
54 |
+
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
55 |
+
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
56 |
+
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
57 |
+
and
|
58 |
+
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
59 |
+
|
60 |
+
|
61 |
+
2. For continuous-time DPMs:
|
62 |
+
|
63 |
+
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
64 |
+
schedule are the default settings in DDPM and improved-DDPM:
|
65 |
+
|
66 |
+
Args:
|
67 |
+
beta_min: A `float` number. The smallest beta for the linear schedule.
|
68 |
+
beta_max: A `float` number. The largest beta for the linear schedule.
|
69 |
+
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
70 |
+
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
71 |
+
T: A `float` number. The ending time of the forward process.
|
72 |
+
|
73 |
+
===============================================================
|
74 |
+
|
75 |
+
Args:
|
76 |
+
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
77 |
+
'linear' or 'cosine' for continuous-time DPMs.
|
78 |
+
Returns:
|
79 |
+
A wrapper object of the forward SDE (VP type).
|
80 |
+
|
81 |
+
===============================================================
|
82 |
+
|
83 |
+
Example:
|
84 |
+
|
85 |
+
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
86 |
+
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
87 |
+
|
88 |
+
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
89 |
+
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
90 |
+
|
91 |
+
# For continuous-time DPMs (VPSDE), linear schedule:
|
92 |
+
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
93 |
+
|
94 |
+
"""
|
95 |
+
|
96 |
+
if schedule not in ['discrete', 'linear', 'cosine']:
|
97 |
+
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
|
98 |
+
|
99 |
+
self.schedule = schedule
|
100 |
+
if schedule == 'discrete':
|
101 |
+
if betas is not None:
|
102 |
+
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
103 |
+
else:
|
104 |
+
assert alphas_cumprod is not None
|
105 |
+
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
106 |
+
self.total_N = len(log_alphas)
|
107 |
+
self.T = 1.
|
108 |
+
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1)).to(dtype=dtype)
|
109 |
+
self.log_alpha_array = log_alphas.reshape((1, -1,)).to(dtype=dtype)
|
110 |
+
else:
|
111 |
+
self.total_N = 1000
|
112 |
+
self.beta_0 = continuous_beta_0
|
113 |
+
self.beta_1 = continuous_beta_1
|
114 |
+
self.cosine_s = 0.008
|
115 |
+
self.cosine_beta_max = 999.
|
116 |
+
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
117 |
+
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
118 |
+
self.schedule = schedule
|
119 |
+
if schedule == 'cosine':
|
120 |
+
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
121 |
+
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
122 |
+
self.T = 0.9946
|
123 |
+
else:
|
124 |
+
self.T = 1.
|
125 |
+
|
126 |
+
def marginal_log_mean_coeff(self, t):
|
127 |
+
"""
|
128 |
+
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
129 |
+
"""
|
130 |
+
if self.schedule == 'discrete':
|
131 |
+
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
|
132 |
+
elif self.schedule == 'linear':
|
133 |
+
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
134 |
+
elif self.schedule == 'cosine':
|
135 |
+
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
136 |
+
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
137 |
+
return log_alpha_t
|
138 |
+
|
139 |
+
def marginal_alpha(self, t):
|
140 |
+
"""
|
141 |
+
Compute alpha_t of a given continuous-time label t in [0, T].
|
142 |
+
"""
|
143 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
144 |
+
|
145 |
+
def marginal_std(self, t):
|
146 |
+
"""
|
147 |
+
Compute sigma_t of a given continuous-time label t in [0, T].
|
148 |
+
"""
|
149 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
150 |
+
|
151 |
+
def marginal_lambda(self, t):
|
152 |
+
"""
|
153 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
154 |
+
"""
|
155 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
156 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
157 |
+
return log_mean_coeff - log_std
|
158 |
+
|
159 |
+
def inverse_lambda(self, lamb):
|
160 |
+
"""
|
161 |
+
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
162 |
+
"""
|
163 |
+
if self.schedule == 'linear':
|
164 |
+
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
165 |
+
Delta = self.beta_0**2 + tmp
|
166 |
+
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
167 |
+
elif self.schedule == 'discrete':
|
168 |
+
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
169 |
+
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
|
170 |
+
return t.reshape((-1,))
|
171 |
+
else:
|
172 |
+
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
173 |
+
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
174 |
+
t = t_fn(log_alpha)
|
175 |
+
return t
|
176 |
+
|
177 |
+
|
178 |
+
def model_wrapper(
|
179 |
+
model,
|
180 |
+
noise_schedule,
|
181 |
+
model_type="noise",
|
182 |
+
model_kwargs={},
|
183 |
+
guidance_type="uncond",
|
184 |
+
condition=None,
|
185 |
+
unconditional_condition=None,
|
186 |
+
guidance_scale=1.,
|
187 |
+
classifier_fn=None,
|
188 |
+
classifier_kwargs={},
|
189 |
+
):
|
190 |
+
"""Create a wrapper function for the noise prediction model.
|
191 |
+
|
192 |
+
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
193 |
+
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
194 |
+
|
195 |
+
We support four types of the diffusion model by setting `model_type`:
|
196 |
+
|
197 |
+
1. "noise": noise prediction model. (Trained by predicting noise).
|
198 |
+
|
199 |
+
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
200 |
+
|
201 |
+
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
202 |
+
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
203 |
+
|
204 |
+
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
205 |
+
arXiv preprint arXiv:2202.00512 (2022).
|
206 |
+
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
207 |
+
arXiv preprint arXiv:2210.02303 (2022).
|
208 |
+
|
209 |
+
4. "score": marginal score function. (Trained by denoising score matching).
|
210 |
+
Note that the score function and the noise prediction model follows a simple relationship:
|
211 |
+
```
|
212 |
+
noise(x_t, t) = -sigma_t * score(x_t, t)
|
213 |
+
```
|
214 |
+
|
215 |
+
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
216 |
+
1. "uncond": unconditional sampling by DPMs.
|
217 |
+
The input `model` has the following format:
|
218 |
+
``
|
219 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
220 |
+
``
|
221 |
+
|
222 |
+
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
223 |
+
The input `model` has the following format:
|
224 |
+
``
|
225 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
226 |
+
``
|
227 |
+
|
228 |
+
The input `classifier_fn` has the following format:
|
229 |
+
``
|
230 |
+
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
231 |
+
``
|
232 |
+
|
233 |
+
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
234 |
+
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
235 |
+
|
236 |
+
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
237 |
+
The input `model` has the following format:
|
238 |
+
``
|
239 |
+
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
240 |
+
``
|
241 |
+
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
242 |
+
|
243 |
+
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
244 |
+
arXiv preprint arXiv:2207.12598 (2022).
|
245 |
+
|
246 |
+
|
247 |
+
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
248 |
+
or continuous-time labels (i.e. epsilon to T).
|
249 |
+
|
250 |
+
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
251 |
+
``
|
252 |
+
def model_fn(x, t_continuous) -> noise:
|
253 |
+
t_input = get_model_input_time(t_continuous)
|
254 |
+
return noise_pred(model, x, t_input, **model_kwargs)
|
255 |
+
``
|
256 |
+
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
257 |
+
|
258 |
+
===============================================================
|
259 |
+
|
260 |
+
Args:
|
261 |
+
model: A diffusion model with the corresponding format described above.
|
262 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
263 |
+
model_type: A `str`. The parameterization type of the diffusion model.
|
264 |
+
"noise" or "x_start" or "v" or "score".
|
265 |
+
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
266 |
+
guidance_type: A `str`. The type of the guidance for sampling.
|
267 |
+
"uncond" or "classifier" or "classifier-free".
|
268 |
+
condition: A pytorch tensor. The condition for the guided sampling.
|
269 |
+
Only used for "classifier" or "classifier-free" guidance type.
|
270 |
+
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
271 |
+
Only used for "classifier-free" guidance type.
|
272 |
+
guidance_scale: A `float`. The scale for the guided sampling.
|
273 |
+
classifier_fn: A classifier function. Only used for the classifier guidance.
|
274 |
+
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
275 |
+
Returns:
|
276 |
+
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
277 |
+
"""
|
278 |
+
|
279 |
+
def get_model_input_time(t_continuous):
|
280 |
+
"""
|
281 |
+
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
282 |
+
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
283 |
+
For continuous-time DPMs, we just use `t_continuous`.
|
284 |
+
"""
|
285 |
+
if noise_schedule.schedule == 'discrete':
|
286 |
+
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
|
287 |
+
else:
|
288 |
+
return t_continuous
|
289 |
+
|
290 |
+
def noise_pred_fn(x, t_continuous, cond=None):
|
291 |
+
t_input = get_model_input_time(t_continuous)
|
292 |
+
if cond is None:
|
293 |
+
output = model(x, t_input, **model_kwargs)
|
294 |
+
else:
|
295 |
+
output = model(x, t_input, cond, **model_kwargs)
|
296 |
+
if model_type == "noise":
|
297 |
+
return output
|
298 |
+
elif model_type == "x_start":
|
299 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
300 |
+
return (x - alpha_t * output) / sigma_t
|
301 |
+
elif model_type == "v":
|
302 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
303 |
+
return alpha_t * output + sigma_t * x
|
304 |
+
elif model_type == "score":
|
305 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
306 |
+
return -sigma_t * output
|
307 |
+
|
308 |
+
def cond_grad_fn(x, t_input):
|
309 |
+
"""
|
310 |
+
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
311 |
+
"""
|
312 |
+
with torch.enable_grad():
|
313 |
+
x_in = x.detach().requires_grad_(True)
|
314 |
+
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
315 |
+
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
316 |
+
|
317 |
+
def model_fn(x, t_continuous):
|
318 |
+
"""
|
319 |
+
The noise predicition model function that is used for DPM-Solver.
|
320 |
+
"""
|
321 |
+
if guidance_type == "uncond":
|
322 |
+
return noise_pred_fn(x, t_continuous)
|
323 |
+
elif guidance_type == "classifier":
|
324 |
+
assert classifier_fn is not None
|
325 |
+
t_input = get_model_input_time(t_continuous)
|
326 |
+
cond_grad = cond_grad_fn(x, t_input)
|
327 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
328 |
+
noise = noise_pred_fn(x, t_continuous)
|
329 |
+
return noise - guidance_scale * sigma_t * cond_grad
|
330 |
+
elif guidance_type == "classifier-free":
|
331 |
+
if guidance_scale == 1. or unconditional_condition is None:
|
332 |
+
return noise_pred_fn(x, t_continuous, cond=condition)
|
333 |
+
elif model_kwargs["version"] == "V1" or model_kwargs["version"] == "V2_ConStyle" or model_kwargs["version"] == "V3": # add this
|
334 |
+
x_in = torch.cat([x] * 2)
|
335 |
+
t_in = torch.cat([t_continuous] * 2)
|
336 |
+
c_in = []
|
337 |
+
c_in.append(torch.cat([unconditional_condition[0], condition[0]], dim=0))
|
338 |
+
c_in.append(torch.cat([unconditional_condition[1], condition[1]], dim=0))
|
339 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
340 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
341 |
+
elif model_kwargs["version"] == "FG_Sep":
|
342 |
+
x_in = torch.cat([x] * 3)
|
343 |
+
t_in = torch.cat([t_continuous] * 3)
|
344 |
+
c_in = []
|
345 |
+
c_in.append(torch.cat([unconditional_condition[0], unconditional_condition[0], condition[0]], dim=0))
|
346 |
+
c_in.append(torch.cat([unconditional_condition[1], condition[1], unconditional_condition[1]], dim=0))
|
347 |
+
noise_uncond, noise_cond_style, noise_cond_content = noise_pred_fn(x_in, t_in, cond=c_in).chunk(3)
|
348 |
+
|
349 |
+
style_guidance_scale = guidance_scale[0]
|
350 |
+
content_guidance_scale = guidance_scale[1]
|
351 |
+
return noise_uncond + style_guidance_scale * (noise_cond_style - noise_uncond) + content_guidance_scale * (noise_cond_content - noise_uncond)
|
352 |
+
else:
|
353 |
+
x_in = torch.cat([x] * 2)
|
354 |
+
t_in = torch.cat([t_continuous] * 2)
|
355 |
+
c_in = torch.cat([unconditional_condition, condition])
|
356 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
357 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
358 |
+
|
359 |
+
assert model_type in ["noise", "x_start", "v"]
|
360 |
+
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
361 |
+
return model_fn
|
362 |
+
|
363 |
+
|
364 |
+
class DPM_Solver:
|
365 |
+
def __init__(
|
366 |
+
self,
|
367 |
+
model_fn,
|
368 |
+
noise_schedule,
|
369 |
+
algorithm_type="dpmsolver++",
|
370 |
+
correcting_x0_fn=None,
|
371 |
+
correcting_xt_fn=None,
|
372 |
+
thresholding_max_val=1.,
|
373 |
+
dynamic_thresholding_ratio=0.995,
|
374 |
+
):
|
375 |
+
"""Construct a DPM-Solver.
|
376 |
+
|
377 |
+
We support both DPM-Solver (`algorithm_type="dpmsolver"`) and DPM-Solver++ (`algorithm_type="dpmsolver++"`).
|
378 |
+
|
379 |
+
We also support the "dynamic thresholding" method in Imagen[1]. For pixel-space diffusion models, you
|
380 |
+
can set both `algorithm_type="dpmsolver++"` and `correcting_x0_fn="dynamic_thresholding"` to use the
|
381 |
+
dynamic thresholding. The "dynamic thresholding" can greatly improve the sample quality for pixel-space
|
382 |
+
DPMs with large guidance scales. Note that the thresholding method is **unsuitable** for latent-space
|
383 |
+
DPMs (such as stable-diffusion).
|
384 |
+
|
385 |
+
To support advanced algorithms in image-to-image applications, we also support corrector functions for
|
386 |
+
both x0 and xt.
|
387 |
+
|
388 |
+
Args:
|
389 |
+
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
|
390 |
+
``
|
391 |
+
def model_fn(x, t_continuous):
|
392 |
+
return noise
|
393 |
+
``
|
394 |
+
The shape of `x` is `(batch_size, **shape)`, and the shape of `t_continuous` is `(batch_size,)`.
|
395 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
396 |
+
algorithm_type: A `str`. Either "dpmsolver" or "dpmsolver++".
|
397 |
+
correcting_x0_fn: A `str` or a function with the following format:
|
398 |
+
```
|
399 |
+
def correcting_x0_fn(x0, t):
|
400 |
+
x0_new = ...
|
401 |
+
return x0_new
|
402 |
+
```
|
403 |
+
This function is to correct the outputs of the data prediction model at each sampling step. e.g.,
|
404 |
+
```
|
405 |
+
x0_pred = data_pred_model(xt, t)
|
406 |
+
if correcting_x0_fn is not None:
|
407 |
+
x0_pred = correcting_x0_fn(x0_pred, t)
|
408 |
+
xt_1 = update(x0_pred, xt, t)
|
409 |
+
```
|
410 |
+
If `correcting_x0_fn="dynamic_thresholding"`, we use the dynamic thresholding proposed in Imagen[1].
|
411 |
+
correcting_xt_fn: A function with the following format:
|
412 |
+
```
|
413 |
+
def correcting_xt_fn(xt, t, step):
|
414 |
+
x_new = ...
|
415 |
+
return x_new
|
416 |
+
```
|
417 |
+
This function is to correct the intermediate samples xt at each sampling step. e.g.,
|
418 |
+
```
|
419 |
+
xt = ...
|
420 |
+
xt = correcting_xt_fn(xt, t, step)
|
421 |
+
```
|
422 |
+
thresholding_max_val: A `float`. The max value for thresholding.
|
423 |
+
Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`.
|
424 |
+
dynamic_thresholding_ratio: A `float`. The ratio for dynamic thresholding (see Imagen[1] for details).
|
425 |
+
Valid only when use `dpmsolver++` and `correcting_x0_fn="dynamic_thresholding"`.
|
426 |
+
|
427 |
+
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour,
|
428 |
+
Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models
|
429 |
+
with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
|
430 |
+
"""
|
431 |
+
self.model = lambda x, t: model_fn(x, t.expand((x.shape[0])))
|
432 |
+
self.noise_schedule = noise_schedule
|
433 |
+
assert algorithm_type in ["dpmsolver", "dpmsolver++"]
|
434 |
+
self.algorithm_type = algorithm_type
|
435 |
+
if correcting_x0_fn == "dynamic_thresholding":
|
436 |
+
self.correcting_x0_fn = self.dynamic_thresholding_fn
|
437 |
+
else:
|
438 |
+
self.correcting_x0_fn = correcting_x0_fn
|
439 |
+
self.correcting_xt_fn = correcting_xt_fn
|
440 |
+
self.dynamic_thresholding_ratio = dynamic_thresholding_ratio
|
441 |
+
self.thresholding_max_val = thresholding_max_val
|
442 |
+
|
443 |
+
def dynamic_thresholding_fn(self, x0):
|
444 |
+
"""
|
445 |
+
The dynamic thresholding method.
|
446 |
+
"""
|
447 |
+
dims = x0.dim()
|
448 |
+
p = self.dynamic_thresholding_ratio
|
449 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
450 |
+
s = expand_dims(torch.maximum(s, self.thresholding_max_val * torch.ones_like(s).to(s.device)), dims)
|
451 |
+
x0 = torch.clamp(x0, -s, s) / s
|
452 |
+
return x0
|
453 |
+
|
454 |
+
def noise_prediction_fn(self, x, t):
|
455 |
+
"""
|
456 |
+
Return the noise prediction model.
|
457 |
+
"""
|
458 |
+
return self.model(x, t)
|
459 |
+
|
460 |
+
def data_prediction_fn(self, x, t):
|
461 |
+
"""
|
462 |
+
Return the data prediction model (with corrector).
|
463 |
+
"""
|
464 |
+
noise = self.noise_prediction_fn(x, t)
|
465 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
466 |
+
x0 = (x - sigma_t * noise) / alpha_t
|
467 |
+
if self.correcting_x0_fn is not None:
|
468 |
+
x0 = self.correcting_x0_fn(x0)
|
469 |
+
return x0
|
470 |
+
|
471 |
+
def model_fn(self, x, t):
|
472 |
+
"""
|
473 |
+
Convert the model to the noise prediction model or the data prediction model.
|
474 |
+
"""
|
475 |
+
if self.algorithm_type == "dpmsolver++":
|
476 |
+
return self.data_prediction_fn(x, t)
|
477 |
+
else:
|
478 |
+
return self.noise_prediction_fn(x, t)
|
479 |
+
|
480 |
+
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
481 |
+
"""Compute the intermediate time steps for sampling.
|
482 |
+
|
483 |
+
Args:
|
484 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
485 |
+
- 'logSNR': uniform logSNR for the time steps.
|
486 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
487 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
488 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
489 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
490 |
+
N: A `int`. The total number of the spacing of the time steps.
|
491 |
+
device: A torch device.
|
492 |
+
Returns:
|
493 |
+
A pytorch tensor of the time steps, with the shape (N + 1,).
|
494 |
+
"""
|
495 |
+
if skip_type == 'logSNR':
|
496 |
+
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
497 |
+
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
498 |
+
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
499 |
+
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
500 |
+
elif skip_type == 'time_uniform':
|
501 |
+
return torch.linspace(t_T, t_0, N + 1).to(device)
|
502 |
+
elif skip_type == 'time_quadratic':
|
503 |
+
t_order = 2
|
504 |
+
t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
|
505 |
+
return t
|
506 |
+
else:
|
507 |
+
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
508 |
+
|
509 |
+
def get_orders_and_timesteps_for_singlestep_solver(self, steps, order, skip_type, t_T, t_0, device):
|
510 |
+
"""
|
511 |
+
Get the order of each step for sampling by the singlestep DPM-Solver.
|
512 |
+
|
513 |
+
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
|
514 |
+
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
|
515 |
+
- If order == 1:
|
516 |
+
We take `steps` of DPM-Solver-1 (i.e. DDIM).
|
517 |
+
- If order == 2:
|
518 |
+
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
|
519 |
+
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
|
520 |
+
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
521 |
+
- If order == 3:
|
522 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
523 |
+
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
524 |
+
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
|
525 |
+
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
|
526 |
+
|
527 |
+
============================================
|
528 |
+
Args:
|
529 |
+
order: A `int`. The max order for the solver (2 or 3).
|
530 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
531 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
532 |
+
- 'logSNR': uniform logSNR for the time steps.
|
533 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
534 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
535 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
536 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
537 |
+
device: A torch device.
|
538 |
+
Returns:
|
539 |
+
orders: A list of the solver order of each step.
|
540 |
+
"""
|
541 |
+
if order == 3:
|
542 |
+
K = steps // 3 + 1
|
543 |
+
if steps % 3 == 0:
|
544 |
+
orders = [3,] * (K - 2) + [2, 1]
|
545 |
+
elif steps % 3 == 1:
|
546 |
+
orders = [3,] * (K - 1) + [1]
|
547 |
+
else:
|
548 |
+
orders = [3,] * (K - 1) + [2]
|
549 |
+
elif order == 2:
|
550 |
+
if steps % 2 == 0:
|
551 |
+
K = steps // 2
|
552 |
+
orders = [2,] * K
|
553 |
+
else:
|
554 |
+
K = steps // 2 + 1
|
555 |
+
orders = [2,] * (K - 1) + [1]
|
556 |
+
elif order == 1:
|
557 |
+
K = 1
|
558 |
+
orders = [1,] * steps
|
559 |
+
else:
|
560 |
+
raise ValueError("'order' must be '1' or '2' or '3'.")
|
561 |
+
if skip_type == 'logSNR':
|
562 |
+
# To reproduce the results in DPM-Solver paper
|
563 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, K, device)
|
564 |
+
else:
|
565 |
+
timesteps_outer = self.get_time_steps(skip_type, t_T, t_0, steps, device)[torch.cumsum(torch.tensor([0,] + orders), 0).to(device)]
|
566 |
+
return timesteps_outer, orders
|
567 |
+
|
568 |
+
def denoise_to_zero_fn(self, x, s):
|
569 |
+
"""
|
570 |
+
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
571 |
+
"""
|
572 |
+
return self.data_prediction_fn(x, s)
|
573 |
+
|
574 |
+
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
|
575 |
+
"""
|
576 |
+
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
|
577 |
+
|
578 |
+
Args:
|
579 |
+
x: A pytorch tensor. The initial value at time `s`.
|
580 |
+
s: A pytorch tensor. The starting time, with the shape (1,).
|
581 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
582 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
583 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
584 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`.
|
585 |
+
Returns:
|
586 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
587 |
+
"""
|
588 |
+
ns = self.noise_schedule
|
589 |
+
dims = x.dim()
|
590 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
591 |
+
h = lambda_t - lambda_s
|
592 |
+
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
|
593 |
+
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
|
594 |
+
alpha_t = torch.exp(log_alpha_t)
|
595 |
+
|
596 |
+
if self.algorithm_type == "dpmsolver++":
|
597 |
+
phi_1 = torch.expm1(-h)
|
598 |
+
if model_s is None:
|
599 |
+
model_s = self.model_fn(x, s)
|
600 |
+
x_t = (
|
601 |
+
sigma_t / sigma_s * x
|
602 |
+
- alpha_t * phi_1 * model_s
|
603 |
+
)
|
604 |
+
if return_intermediate:
|
605 |
+
return x_t, {'model_s': model_s}
|
606 |
+
else:
|
607 |
+
return x_t
|
608 |
+
else:
|
609 |
+
phi_1 = torch.expm1(h)
|
610 |
+
if model_s is None:
|
611 |
+
model_s = self.model_fn(x, s)
|
612 |
+
x_t = (
|
613 |
+
torch.exp(log_alpha_t - log_alpha_s) * x
|
614 |
+
- (sigma_t * phi_1) * model_s
|
615 |
+
)
|
616 |
+
if return_intermediate:
|
617 |
+
return x_t, {'model_s': model_s}
|
618 |
+
else:
|
619 |
+
return x_t
|
620 |
+
|
621 |
+
def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type='dpmsolver'):
|
622 |
+
"""
|
623 |
+
Singlestep solver DPM-Solver-2 from time `s` to time `t`.
|
624 |
+
|
625 |
+
Args:
|
626 |
+
x: A pytorch tensor. The initial value at time `s`.
|
627 |
+
s: A pytorch tensor. The starting time, with the shape (1,).
|
628 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
629 |
+
r1: A `float`. The hyperparameter of the second-order solver.
|
630 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
631 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
632 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
|
633 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
634 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
635 |
+
Returns:
|
636 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
637 |
+
"""
|
638 |
+
if solver_type not in ['dpmsolver', 'taylor']:
|
639 |
+
raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
|
640 |
+
if r1 is None:
|
641 |
+
r1 = 0.5
|
642 |
+
ns = self.noise_schedule
|
643 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
644 |
+
h = lambda_t - lambda_s
|
645 |
+
lambda_s1 = lambda_s + r1 * h
|
646 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
647 |
+
log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(t)
|
648 |
+
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
|
649 |
+
alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
|
650 |
+
|
651 |
+
if self.algorithm_type == "dpmsolver++":
|
652 |
+
phi_11 = torch.expm1(-r1 * h)
|
653 |
+
phi_1 = torch.expm1(-h)
|
654 |
+
|
655 |
+
if model_s is None:
|
656 |
+
model_s = self.model_fn(x, s)
|
657 |
+
x_s1 = (
|
658 |
+
(sigma_s1 / sigma_s) * x
|
659 |
+
- (alpha_s1 * phi_11) * model_s
|
660 |
+
)
|
661 |
+
model_s1 = self.model_fn(x_s1, s1)
|
662 |
+
if solver_type == 'dpmsolver':
|
663 |
+
x_t = (
|
664 |
+
(sigma_t / sigma_s) * x
|
665 |
+
- (alpha_t * phi_1) * model_s
|
666 |
+
- (0.5 / r1) * (alpha_t * phi_1) * (model_s1 - model_s)
|
667 |
+
)
|
668 |
+
elif solver_type == 'taylor':
|
669 |
+
x_t = (
|
670 |
+
(sigma_t / sigma_s) * x
|
671 |
+
- (alpha_t * phi_1) * model_s
|
672 |
+
+ (1. / r1) * (alpha_t * (phi_1 / h + 1.)) * (model_s1 - model_s)
|
673 |
+
)
|
674 |
+
else:
|
675 |
+
phi_11 = torch.expm1(r1 * h)
|
676 |
+
phi_1 = torch.expm1(h)
|
677 |
+
|
678 |
+
if model_s is None:
|
679 |
+
model_s = self.model_fn(x, s)
|
680 |
+
x_s1 = (
|
681 |
+
torch.exp(log_alpha_s1 - log_alpha_s) * x
|
682 |
+
- (sigma_s1 * phi_11) * model_s
|
683 |
+
)
|
684 |
+
model_s1 = self.model_fn(x_s1, s1)
|
685 |
+
if solver_type == 'dpmsolver':
|
686 |
+
x_t = (
|
687 |
+
torch.exp(log_alpha_t - log_alpha_s) * x
|
688 |
+
- (sigma_t * phi_1) * model_s
|
689 |
+
- (0.5 / r1) * (sigma_t * phi_1) * (model_s1 - model_s)
|
690 |
+
)
|
691 |
+
elif solver_type == 'taylor':
|
692 |
+
x_t = (
|
693 |
+
torch.exp(log_alpha_t - log_alpha_s) * x
|
694 |
+
- (sigma_t * phi_1) * model_s
|
695 |
+
- (1. / r1) * (sigma_t * (phi_1 / h - 1.)) * (model_s1 - model_s)
|
696 |
+
)
|
697 |
+
if return_intermediate:
|
698 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1}
|
699 |
+
else:
|
700 |
+
return x_t
|
701 |
+
|
702 |
+
def singlestep_dpm_solver_third_update(self, x, s, t, r1=1./3., r2=2./3., model_s=None, model_s1=None, return_intermediate=False, solver_type='dpmsolver'):
|
703 |
+
"""
|
704 |
+
Singlestep solver DPM-Solver-3 from time `s` to time `t`.
|
705 |
+
|
706 |
+
Args:
|
707 |
+
x: A pytorch tensor. The initial value at time `s`.
|
708 |
+
s: A pytorch tensor. The starting time, with the shape (1,).
|
709 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
710 |
+
r1: A `float`. The hyperparameter of the third-order solver.
|
711 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
712 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
713 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
714 |
+
model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
|
715 |
+
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
|
716 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
717 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
718 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
719 |
+
Returns:
|
720 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
721 |
+
"""
|
722 |
+
if solver_type not in ['dpmsolver', 'taylor']:
|
723 |
+
raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
|
724 |
+
if r1 is None:
|
725 |
+
r1 = 1. / 3.
|
726 |
+
if r2 is None:
|
727 |
+
r2 = 2. / 3.
|
728 |
+
ns = self.noise_schedule
|
729 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
730 |
+
h = lambda_t - lambda_s
|
731 |
+
lambda_s1 = lambda_s + r1 * h
|
732 |
+
lambda_s2 = lambda_s + r2 * h
|
733 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
734 |
+
s2 = ns.inverse_lambda(lambda_s2)
|
735 |
+
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
|
736 |
+
sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(s2), ns.marginal_std(t)
|
737 |
+
alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
|
738 |
+
|
739 |
+
if self.algorithm_type == "dpmsolver++":
|
740 |
+
phi_11 = torch.expm1(-r1 * h)
|
741 |
+
phi_12 = torch.expm1(-r2 * h)
|
742 |
+
phi_1 = torch.expm1(-h)
|
743 |
+
phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
|
744 |
+
phi_2 = phi_1 / h + 1.
|
745 |
+
phi_3 = phi_2 / h - 0.5
|
746 |
+
|
747 |
+
if model_s is None:
|
748 |
+
model_s = self.model_fn(x, s)
|
749 |
+
if model_s1 is None:
|
750 |
+
x_s1 = (
|
751 |
+
(sigma_s1 / sigma_s) * x
|
752 |
+
- (alpha_s1 * phi_11) * model_s
|
753 |
+
)
|
754 |
+
model_s1 = self.model_fn(x_s1, s1)
|
755 |
+
x_s2 = (
|
756 |
+
(sigma_s2 / sigma_s) * x
|
757 |
+
- (alpha_s2 * phi_12) * model_s
|
758 |
+
+ r2 / r1 * (alpha_s2 * phi_22) * (model_s1 - model_s)
|
759 |
+
)
|
760 |
+
model_s2 = self.model_fn(x_s2, s2)
|
761 |
+
if solver_type == 'dpmsolver':
|
762 |
+
x_t = (
|
763 |
+
(sigma_t / sigma_s) * x
|
764 |
+
- (alpha_t * phi_1) * model_s
|
765 |
+
+ (1. / r2) * (alpha_t * phi_2) * (model_s2 - model_s)
|
766 |
+
)
|
767 |
+
elif solver_type == 'taylor':
|
768 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
769 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
770 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
771 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
772 |
+
x_t = (
|
773 |
+
(sigma_t / sigma_s) * x
|
774 |
+
- (alpha_t * phi_1) * model_s
|
775 |
+
+ (alpha_t * phi_2) * D1
|
776 |
+
- (alpha_t * phi_3) * D2
|
777 |
+
)
|
778 |
+
else:
|
779 |
+
phi_11 = torch.expm1(r1 * h)
|
780 |
+
phi_12 = torch.expm1(r2 * h)
|
781 |
+
phi_1 = torch.expm1(h)
|
782 |
+
phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
|
783 |
+
phi_2 = phi_1 / h - 1.
|
784 |
+
phi_3 = phi_2 / h - 0.5
|
785 |
+
|
786 |
+
if model_s is None:
|
787 |
+
model_s = self.model_fn(x, s)
|
788 |
+
if model_s1 is None:
|
789 |
+
x_s1 = (
|
790 |
+
(torch.exp(log_alpha_s1 - log_alpha_s)) * x
|
791 |
+
- (sigma_s1 * phi_11) * model_s
|
792 |
+
)
|
793 |
+
model_s1 = self.model_fn(x_s1, s1)
|
794 |
+
x_s2 = (
|
795 |
+
(torch.exp(log_alpha_s2 - log_alpha_s)) * x
|
796 |
+
- (sigma_s2 * phi_12) * model_s
|
797 |
+
- r2 / r1 * (sigma_s2 * phi_22) * (model_s1 - model_s)
|
798 |
+
)
|
799 |
+
model_s2 = self.model_fn(x_s2, s2)
|
800 |
+
if solver_type == 'dpmsolver':
|
801 |
+
x_t = (
|
802 |
+
(torch.exp(log_alpha_t - log_alpha_s)) * x
|
803 |
+
- (sigma_t * phi_1) * model_s
|
804 |
+
- (1. / r2) * (sigma_t * phi_2) * (model_s2 - model_s)
|
805 |
+
)
|
806 |
+
elif solver_type == 'taylor':
|
807 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
808 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
809 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
810 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
811 |
+
x_t = (
|
812 |
+
(torch.exp(log_alpha_t - log_alpha_s)) * x
|
813 |
+
- (sigma_t * phi_1) * model_s
|
814 |
+
- (sigma_t * phi_2) * D1
|
815 |
+
- (sigma_t * phi_3) * D2
|
816 |
+
)
|
817 |
+
|
818 |
+
if return_intermediate:
|
819 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
|
820 |
+
else:
|
821 |
+
return x_t
|
822 |
+
|
823 |
+
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpmsolver"):
|
824 |
+
"""
|
825 |
+
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
|
826 |
+
|
827 |
+
Args:
|
828 |
+
x: A pytorch tensor. The initial value at time `s`.
|
829 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
830 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
|
831 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
832 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
833 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
834 |
+
Returns:
|
835 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
836 |
+
"""
|
837 |
+
if solver_type not in ['dpmsolver', 'taylor']:
|
838 |
+
raise ValueError("'solver_type' must be either 'dpmsolver' or 'taylor', got {}".format(solver_type))
|
839 |
+
ns = self.noise_schedule
|
840 |
+
model_prev_1, model_prev_0 = model_prev_list[-2], model_prev_list[-1]
|
841 |
+
t_prev_1, t_prev_0 = t_prev_list[-2], t_prev_list[-1]
|
842 |
+
lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
843 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
844 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
845 |
+
alpha_t = torch.exp(log_alpha_t)
|
846 |
+
|
847 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
848 |
+
h = lambda_t - lambda_prev_0
|
849 |
+
r0 = h_0 / h
|
850 |
+
D1_0 = (1. / r0) * (model_prev_0 - model_prev_1)
|
851 |
+
if self.algorithm_type == "dpmsolver++":
|
852 |
+
phi_1 = torch.expm1(-h)
|
853 |
+
if solver_type == 'dpmsolver':
|
854 |
+
x_t = (
|
855 |
+
(sigma_t / sigma_prev_0) * x
|
856 |
+
- (alpha_t * phi_1) * model_prev_0
|
857 |
+
- 0.5 * (alpha_t * phi_1) * D1_0
|
858 |
+
)
|
859 |
+
elif solver_type == 'taylor':
|
860 |
+
x_t = (
|
861 |
+
(sigma_t / sigma_prev_0) * x
|
862 |
+
- (alpha_t * phi_1) * model_prev_0
|
863 |
+
+ (alpha_t * (phi_1 / h + 1.)) * D1_0
|
864 |
+
)
|
865 |
+
else:
|
866 |
+
phi_1 = torch.expm1(h)
|
867 |
+
if solver_type == 'dpmsolver':
|
868 |
+
x_t = (
|
869 |
+
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
870 |
+
- (sigma_t * phi_1) * model_prev_0
|
871 |
+
- 0.5 * (sigma_t * phi_1) * D1_0
|
872 |
+
)
|
873 |
+
elif solver_type == 'taylor':
|
874 |
+
x_t = (
|
875 |
+
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
876 |
+
- (sigma_t * phi_1) * model_prev_0
|
877 |
+
- (sigma_t * (phi_1 / h - 1.)) * D1_0
|
878 |
+
)
|
879 |
+
return x_t
|
880 |
+
|
881 |
+
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpmsolver'):
|
882 |
+
"""
|
883 |
+
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
|
884 |
+
|
885 |
+
Args:
|
886 |
+
x: A pytorch tensor. The initial value at time `s`.
|
887 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
888 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
|
889 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
890 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
891 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
892 |
+
Returns:
|
893 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
894 |
+
"""
|
895 |
+
ns = self.noise_schedule
|
896 |
+
model_prev_2, model_prev_1, model_prev_0 = model_prev_list
|
897 |
+
t_prev_2, t_prev_1, t_prev_0 = t_prev_list
|
898 |
+
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
899 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
900 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
901 |
+
alpha_t = torch.exp(log_alpha_t)
|
902 |
+
|
903 |
+
h_1 = lambda_prev_1 - lambda_prev_2
|
904 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
905 |
+
h = lambda_t - lambda_prev_0
|
906 |
+
r0, r1 = h_0 / h, h_1 / h
|
907 |
+
D1_0 = (1. / r0) * (model_prev_0 - model_prev_1)
|
908 |
+
D1_1 = (1. / r1) * (model_prev_1 - model_prev_2)
|
909 |
+
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1)
|
910 |
+
D2 = (1. / (r0 + r1)) * (D1_0 - D1_1)
|
911 |
+
if self.algorithm_type == "dpmsolver++":
|
912 |
+
phi_1 = torch.expm1(-h)
|
913 |
+
phi_2 = phi_1 / h + 1.
|
914 |
+
phi_3 = phi_2 / h - 0.5
|
915 |
+
x_t = (
|
916 |
+
(sigma_t / sigma_prev_0) * x
|
917 |
+
- (alpha_t * phi_1) * model_prev_0
|
918 |
+
+ (alpha_t * phi_2) * D1
|
919 |
+
- (alpha_t * phi_3) * D2
|
920 |
+
)
|
921 |
+
else:
|
922 |
+
phi_1 = torch.expm1(h)
|
923 |
+
phi_2 = phi_1 / h - 1.
|
924 |
+
phi_3 = phi_2 / h - 0.5
|
925 |
+
x_t = (
|
926 |
+
(torch.exp(log_alpha_t - log_alpha_prev_0)) * x
|
927 |
+
- (sigma_t * phi_1) * model_prev_0
|
928 |
+
- (sigma_t * phi_2) * D1
|
929 |
+
- (sigma_t * phi_3) * D2
|
930 |
+
)
|
931 |
+
return x_t
|
932 |
+
|
933 |
+
def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpmsolver', r1=None, r2=None):
|
934 |
+
"""
|
935 |
+
Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
|
936 |
+
|
937 |
+
Args:
|
938 |
+
x: A pytorch tensor. The initial value at time `s`.
|
939 |
+
s: A pytorch tensor. The starting time, with the shape (1,).
|
940 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
941 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
942 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
943 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
944 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
945 |
+
r1: A `float`. The hyperparameter of the second-order or third-order solver.
|
946 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
947 |
+
Returns:
|
948 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
949 |
+
"""
|
950 |
+
if order == 1:
|
951 |
+
return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
|
952 |
+
elif order == 2:
|
953 |
+
return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1)
|
954 |
+
elif order == 3:
|
955 |
+
return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2)
|
956 |
+
else:
|
957 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
958 |
+
|
959 |
+
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpmsolver'):
|
960 |
+
"""
|
961 |
+
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
|
962 |
+
|
963 |
+
Args:
|
964 |
+
x: A pytorch tensor. The initial value at time `s`.
|
965 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
966 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (1,)
|
967 |
+
t: A pytorch tensor. The ending time, with the shape (1,).
|
968 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
969 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
970 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
971 |
+
Returns:
|
972 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
973 |
+
"""
|
974 |
+
if order == 1:
|
975 |
+
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
|
976 |
+
elif order == 2:
|
977 |
+
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
978 |
+
elif order == 3:
|
979 |
+
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
980 |
+
else:
|
981 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
982 |
+
|
983 |
+
def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type='dpmsolver'):
|
984 |
+
"""
|
985 |
+
The adaptive step size solver based on singlestep DPM-Solver.
|
986 |
+
|
987 |
+
Args:
|
988 |
+
x: A pytorch tensor. The initial value at time `t_T`.
|
989 |
+
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
|
990 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
991 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
992 |
+
h_init: A `float`. The initial step size (for logSNR).
|
993 |
+
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
|
994 |
+
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
|
995 |
+
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
|
996 |
+
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
|
997 |
+
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
|
998 |
+
solver_type: either 'dpmsolver' or 'taylor'. The type for the high-order solvers.
|
999 |
+
The type slightly impacts the performance. We recommend to use 'dpmsolver' type.
|
1000 |
+
Returns:
|
1001 |
+
x_0: A pytorch tensor. The approximated solution at time `t_0`.
|
1002 |
+
|
1003 |
+
[1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
|
1004 |
+
"""
|
1005 |
+
ns = self.noise_schedule
|
1006 |
+
s = t_T * torch.ones((1,)).to(x)
|
1007 |
+
lambda_s = ns.marginal_lambda(s)
|
1008 |
+
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
|
1009 |
+
h = h_init * torch.ones_like(s).to(x)
|
1010 |
+
x_prev = x
|
1011 |
+
nfe = 0
|
1012 |
+
if order == 2:
|
1013 |
+
r1 = 0.5
|
1014 |
+
lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
|
1015 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, solver_type=solver_type, **kwargs)
|
1016 |
+
elif order == 3:
|
1017 |
+
r1, r2 = 1. / 3., 2. / 3.
|
1018 |
+
lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type)
|
1019 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs)
|
1020 |
+
else:
|
1021 |
+
raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
|
1022 |
+
while torch.abs((s - t_0)).mean() > t_err:
|
1023 |
+
t = ns.inverse_lambda(lambda_s + h)
|
1024 |
+
x_lower, lower_noise_kwargs = lower_update(x, s, t)
|
1025 |
+
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
|
1026 |
+
delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
|
1027 |
+
norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
|
1028 |
+
E = norm_fn((x_higher - x_lower) / delta).max()
|
1029 |
+
if torch.all(E <= 1.):
|
1030 |
+
x = x_higher
|
1031 |
+
s = t
|
1032 |
+
x_prev = x_lower
|
1033 |
+
lambda_s = ns.marginal_lambda(s)
|
1034 |
+
h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
|
1035 |
+
nfe += order
|
1036 |
+
print('adaptive solver nfe', nfe)
|
1037 |
+
return x
|
1038 |
+
|
1039 |
+
def add_noise(self, x, t, noise=None):
|
1040 |
+
"""
|
1041 |
+
Compute the noised input xt = alpha_t * x + sigma_t * noise.
|
1042 |
+
|
1043 |
+
Args:
|
1044 |
+
x: A `torch.Tensor` with shape `(batch_size, *shape)`.
|
1045 |
+
t: A `torch.Tensor` with shape `(t_size,)`.
|
1046 |
+
Returns:
|
1047 |
+
xt with shape `(t_size, batch_size, *shape)`.
|
1048 |
+
"""
|
1049 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
1050 |
+
if noise is None:
|
1051 |
+
noise = torch.randn((t.shape[0], *x.shape), device=x.device)
|
1052 |
+
x = x.reshape((-1, *x.shape))
|
1053 |
+
xt = expand_dims(alpha_t, x.dim()) * x + expand_dims(sigma_t, x.dim()) * noise
|
1054 |
+
if t.shape[0] == 1:
|
1055 |
+
return xt.squeeze(0)
|
1056 |
+
else:
|
1057 |
+
return xt
|
1058 |
+
|
1059 |
+
def inverse(self, x, steps=20, t_start=None, t_end=None, order=2, skip_type='time_uniform',
|
1060 |
+
method='multistep', lower_order_final=True, denoise_to_zero=False, solver_type='dpmsolver',
|
1061 |
+
atol=0.0078, rtol=0.05, return_intermediate=False,
|
1062 |
+
):
|
1063 |
+
"""
|
1064 |
+
Inverse the sample `x` from time `t_start` to `t_end` by DPM-Solver.
|
1065 |
+
For discrete-time DPMs, we use `t_start=1/N`, where `N` is the total time steps during training.
|
1066 |
+
"""
|
1067 |
+
t_0 = 1. / self.noise_schedule.total_N if t_start is None else t_start
|
1068 |
+
t_T = self.noise_schedule.T if t_end is None else t_end
|
1069 |
+
assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
|
1070 |
+
return self.sample(x, steps=steps, t_start=t_0, t_end=t_T, order=order, skip_type=skip_type,
|
1071 |
+
method=method, lower_order_final=lower_order_final, denoise_to_zero=denoise_to_zero, solver_type=solver_type,
|
1072 |
+
atol=atol, rtol=rtol, return_intermediate=return_intermediate)
|
1073 |
+
|
1074 |
+
def sample(self, x, steps=20, t_start=None, t_end=None, order=2, skip_type='time_uniform',
|
1075 |
+
method='multistep', lower_order_final=True, denoise_to_zero=False, solver_type='dpmsolver',
|
1076 |
+
atol=0.0078, rtol=0.05, return_intermediate=False,
|
1077 |
+
):
|
1078 |
+
"""
|
1079 |
+
Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
|
1080 |
+
|
1081 |
+
=====================================================
|
1082 |
+
|
1083 |
+
We support the following algorithms for both noise prediction model and data prediction model:
|
1084 |
+
- 'singlestep':
|
1085 |
+
Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
|
1086 |
+
We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
|
1087 |
+
The total number of function evaluations (NFE) == `steps`.
|
1088 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
1089 |
+
- If `order` == 1:
|
1090 |
+
- Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
|
1091 |
+
- If `order` == 2:
|
1092 |
+
- Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
|
1093 |
+
- If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
|
1094 |
+
- If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
1095 |
+
- If `order` == 3:
|
1096 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
1097 |
+
- If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
1098 |
+
- If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
|
1099 |
+
- If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
|
1100 |
+
- 'multistep':
|
1101 |
+
Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
|
1102 |
+
We initialize the first `order` values by lower order multistep solvers.
|
1103 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
1104 |
+
Denote K = steps.
|
1105 |
+
- If `order` == 1:
|
1106 |
+
- We use K steps of DPM-Solver-1 (i.e. DDIM).
|
1107 |
+
- If `order` == 2:
|
1108 |
+
- We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
|
1109 |
+
- If `order` == 3:
|
1110 |
+
- We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
|
1111 |
+
- 'singlestep_fixed':
|
1112 |
+
Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
|
1113 |
+
We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
|
1114 |
+
- 'adaptive':
|
1115 |
+
Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
|
1116 |
+
We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
|
1117 |
+
You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
|
1118 |
+
(NFE) and the sample quality.
|
1119 |
+
- If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
|
1120 |
+
- If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
|
1121 |
+
|
1122 |
+
=====================================================
|
1123 |
+
|
1124 |
+
Some advices for choosing the algorithm:
|
1125 |
+
- For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
|
1126 |
+
Use singlestep DPM-Solver or DPM-Solver++ ("DPM-Solver-fast" in the paper) with `order = 3`.
|
1127 |
+
e.g., DPM-Solver:
|
1128 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver")
|
1129 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
1130 |
+
skip_type='time_uniform', method='singlestep')
|
1131 |
+
e.g., DPM-Solver++:
|
1132 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
|
1133 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
1134 |
+
skip_type='time_uniform', method='singlestep')
|
1135 |
+
- For **guided sampling with large guidance scale** by DPMs:
|
1136 |
+
Use multistep DPM-Solver with `algorithm_type="dpmsolver++"` and `order = 2`.
|
1137 |
+
e.g.
|
1138 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, algorithm_type="dpmsolver++")
|
1139 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
|
1140 |
+
skip_type='time_uniform', method='multistep')
|
1141 |
+
|
1142 |
+
We support three types of `skip_type`:
|
1143 |
+
- 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
|
1144 |
+
- 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
|
1145 |
+
- 'time_quadratic': quadratic time for the time steps.
|
1146 |
+
|
1147 |
+
=====================================================
|
1148 |
+
Args:
|
1149 |
+
x: A pytorch tensor. The initial value at time `t_start`
|
1150 |
+
e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
|
1151 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
1152 |
+
t_start: A `float`. The starting time of the sampling.
|
1153 |
+
If `T` is None, we use self.noise_schedule.T (default is 1.0).
|
1154 |
+
t_end: A `float`. The ending time of the sampling.
|
1155 |
+
If `t_end` is None, we use 1. / self.noise_schedule.total_N.
|
1156 |
+
e.g. if total_N == 1000, we have `t_end` == 1e-3.
|
1157 |
+
For discrete-time DPMs:
|
1158 |
+
- We recommend `t_end` == 1. / self.noise_schedule.total_N.
|
1159 |
+
For continuous-time DPMs:
|
1160 |
+
- We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
|
1161 |
+
order: A `int`. The order of DPM-Solver.
|
1162 |
+
skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
|
1163 |
+
method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
|
1164 |
+
denoise_to_zero: A `bool`. Whether to denoise to time 0 at the final step.
|
1165 |
+
Default is `False`. If `denoise_to_zero` is `True`, the total NFE is (`steps` + 1).
|
1166 |
+
|
1167 |
+
This trick is firstly proposed by DDPM (https://arxiv.org/abs/2006.11239) and
|
1168 |
+
score_sde (https://arxiv.org/abs/2011.13456). Such trick can improve the FID
|
1169 |
+
for diffusion models sampling by diffusion SDEs for low-resolutional images
|
1170 |
+
(such as CIFAR-10). However, we observed that such trick does not matter for
|
1171 |
+
high-resolutional images. As it needs an additional NFE, we do not recommend
|
1172 |
+
it for high-resolutional images.
|
1173 |
+
lower_order_final: A `bool`. Whether to use lower order solvers at the final steps.
|
1174 |
+
Only valid for `method=multistep` and `steps < 15`. We empirically find that
|
1175 |
+
this trick is a key to stabilizing the sampling by DPM-Solver with very few steps
|
1176 |
+
(especially for steps <= 10). So we recommend to set it to be `True`.
|
1177 |
+
solver_type: A `str`. The taylor expansion type for the solver. `dpmsolver` or `taylor`. We recommend `dpmsolver`.
|
1178 |
+
atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1179 |
+
rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1180 |
+
return_intermediate: A `bool`. Whether to save the xt at each step.
|
1181 |
+
When set to `True`, method returns a tuple (x0, intermediates); when set to False, method returns only x0.
|
1182 |
+
Returns:
|
1183 |
+
x_end: A pytorch tensor. The approximated solution at time `t_end`.
|
1184 |
+
|
1185 |
+
"""
|
1186 |
+
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
1187 |
+
t_T = self.noise_schedule.T if t_start is None else t_start
|
1188 |
+
assert t_0 > 0 and t_T > 0, "Time range needs to be greater than 0. For discrete-time DPMs, it needs to be in [1 / N, 1], where N is the length of betas array"
|
1189 |
+
if return_intermediate:
|
1190 |
+
assert method in ['multistep', 'singlestep', 'singlestep_fixed'], "Cannot use adaptive solver when saving intermediate values"
|
1191 |
+
if self.correcting_xt_fn is not None:
|
1192 |
+
assert method in ['multistep', 'singlestep', 'singlestep_fixed'], "Cannot use adaptive solver when correcting_xt_fn is not None"
|
1193 |
+
device = x.device
|
1194 |
+
intermediates = []
|
1195 |
+
with torch.no_grad():
|
1196 |
+
if method == 'adaptive':
|
1197 |
+
x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type)
|
1198 |
+
elif method == 'multistep':
|
1199 |
+
assert steps >= order
|
1200 |
+
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
1201 |
+
assert timesteps.shape[0] - 1 == steps
|
1202 |
+
# Init the initial values.
|
1203 |
+
step = 0
|
1204 |
+
t = timesteps[step]
|
1205 |
+
t_prev_list = [t]
|
1206 |
+
model_prev_list = [self.model_fn(x, t)]
|
1207 |
+
if self.correcting_xt_fn is not None:
|
1208 |
+
x = self.correcting_xt_fn(x, t, step)
|
1209 |
+
if return_intermediate:
|
1210 |
+
intermediates.append(x)
|
1211 |
+
# Init the first `order` values by lower order multistep DPM-Solver.
|
1212 |
+
for step in range(1, order):
|
1213 |
+
t = timesteps[step]
|
1214 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, t, step, solver_type=solver_type)
|
1215 |
+
if self.correcting_xt_fn is not None:
|
1216 |
+
x = self.correcting_xt_fn(x, t, step)
|
1217 |
+
if return_intermediate:
|
1218 |
+
intermediates.append(x)
|
1219 |
+
t_prev_list.append(t)
|
1220 |
+
model_prev_list.append(self.model_fn(x, t))
|
1221 |
+
# Compute the remaining values by `order`-th order multistep DPM-Solver.
|
1222 |
+
for step in range(order, steps + 1):
|
1223 |
+
t = timesteps[step]
|
1224 |
+
# We only use lower order for steps < 10
|
1225 |
+
if lower_order_final and steps < 10:
|
1226 |
+
step_order = min(order, steps + 1 - step)
|
1227 |
+
else:
|
1228 |
+
step_order = order
|
1229 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, t, step_order, solver_type=solver_type)
|
1230 |
+
if self.correcting_xt_fn is not None:
|
1231 |
+
x = self.correcting_xt_fn(x, t, step)
|
1232 |
+
if return_intermediate:
|
1233 |
+
intermediates.append(x)
|
1234 |
+
for i in range(order - 1):
|
1235 |
+
t_prev_list[i] = t_prev_list[i + 1]
|
1236 |
+
model_prev_list[i] = model_prev_list[i + 1]
|
1237 |
+
t_prev_list[-1] = t
|
1238 |
+
# We do not need to evaluate the final model value.
|
1239 |
+
if step < steps:
|
1240 |
+
model_prev_list[-1] = self.model_fn(x, t)
|
1241 |
+
elif method in ['singlestep', 'singlestep_fixed']:
|
1242 |
+
if method == 'singlestep':
|
1243 |
+
timesteps_outer, orders = self.get_orders_and_timesteps_for_singlestep_solver(steps=steps, order=order, skip_type=skip_type, t_T=t_T, t_0=t_0, device=device)
|
1244 |
+
elif method == 'singlestep_fixed':
|
1245 |
+
K = steps // order
|
1246 |
+
orders = [order,] * K
|
1247 |
+
timesteps_outer = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=K, device=device)
|
1248 |
+
for step, order in enumerate(orders):
|
1249 |
+
s, t = timesteps_outer[step], timesteps_outer[step + 1]
|
1250 |
+
timesteps_inner = self.get_time_steps(skip_type=skip_type, t_T=s.item(), t_0=t.item(), N=order, device=device)
|
1251 |
+
lambda_inner = self.noise_schedule.marginal_lambda(timesteps_inner)
|
1252 |
+
h = lambda_inner[-1] - lambda_inner[0]
|
1253 |
+
r1 = None if order <= 1 else (lambda_inner[1] - lambda_inner[0]) / h
|
1254 |
+
r2 = None if order <= 2 else (lambda_inner[2] - lambda_inner[0]) / h
|
1255 |
+
x = self.singlestep_dpm_solver_update(x, s, t, order, solver_type=solver_type, r1=r1, r2=r2)
|
1256 |
+
if self.correcting_xt_fn is not None:
|
1257 |
+
x = self.correcting_xt_fn(x, t, step)
|
1258 |
+
if return_intermediate:
|
1259 |
+
intermediates.append(x)
|
1260 |
+
else:
|
1261 |
+
raise ValueError("Got wrong method {}".format(method))
|
1262 |
+
if denoise_to_zero:
|
1263 |
+
t = torch.ones((1,)).to(device) * t_0
|
1264 |
+
x = self.denoise_to_zero_fn(x, t)
|
1265 |
+
if self.correcting_xt_fn is not None:
|
1266 |
+
x = self.correcting_xt_fn(x, t, step + 1)
|
1267 |
+
if return_intermediate:
|
1268 |
+
intermediates.append(x)
|
1269 |
+
if return_intermediate:
|
1270 |
+
return x, intermediates
|
1271 |
+
else:
|
1272 |
+
return x
|
1273 |
+
|
1274 |
+
|
1275 |
+
|
1276 |
+
#############################################################
|
1277 |
+
# other utility functions
|
1278 |
+
#############################################################
|
1279 |
+
|
1280 |
+
def interpolate_fn(x, xp, yp):
|
1281 |
+
"""
|
1282 |
+
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
1283 |
+
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
1284 |
+
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
1285 |
+
|
1286 |
+
Args:
|
1287 |
+
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
1288 |
+
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
1289 |
+
yp: PyTorch tensor with shape [C, K].
|
1290 |
+
Returns:
|
1291 |
+
The function values f(x), with shape [N, C].
|
1292 |
+
"""
|
1293 |
+
N, K = x.shape[0], xp.shape[1]
|
1294 |
+
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
1295 |
+
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
1296 |
+
x_idx = torch.argmin(x_indices, dim=2)
|
1297 |
+
cand_start_idx = x_idx - 1
|
1298 |
+
start_idx = torch.where(
|
1299 |
+
torch.eq(x_idx, 0),
|
1300 |
+
torch.tensor(1, device=x.device),
|
1301 |
+
torch.where(
|
1302 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1303 |
+
),
|
1304 |
+
)
|
1305 |
+
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
1306 |
+
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
1307 |
+
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
1308 |
+
start_idx2 = torch.where(
|
1309 |
+
torch.eq(x_idx, 0),
|
1310 |
+
torch.tensor(0, device=x.device),
|
1311 |
+
torch.where(
|
1312 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1313 |
+
),
|
1314 |
+
)
|
1315 |
+
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
1316 |
+
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
1317 |
+
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
1318 |
+
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
1319 |
+
return cand
|
1320 |
+
|
1321 |
+
|
1322 |
+
def expand_dims(v, dims):
|
1323 |
+
"""
|
1324 |
+
Expand the tensor `v` to the dim `dims`.
|
1325 |
+
|
1326 |
+
Args:
|
1327 |
+
`v`: a PyTorch tensor with shape [N].
|
1328 |
+
`dim`: a `int`.
|
1329 |
+
Returns:
|
1330 |
+
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
1331 |
+
"""
|
1332 |
+
return v[(...,) + (None,)*(dims - 1)]
|
src/dpm_solver/pipeline_dpm_solver.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
from .dpm_solver_pytorch import (NoiseScheduleVP,
|
5 |
+
model_wrapper,
|
6 |
+
DPM_Solver)
|
7 |
+
|
8 |
+
class FontDiffuserDPMPipeline():
|
9 |
+
"""FontDiffuser pipeline with DPM_Solver scheduler.
|
10 |
+
"""
|
11 |
+
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
model,
|
15 |
+
ddpm_train_scheduler,
|
16 |
+
version="V3",
|
17 |
+
model_type="noise",
|
18 |
+
guidance_type="classifier-free",
|
19 |
+
guidance_scale=7.5
|
20 |
+
):
|
21 |
+
super().__init__()
|
22 |
+
self.model = model
|
23 |
+
self.train_scheduler_betas = ddpm_train_scheduler.betas
|
24 |
+
# Define the noise schedule
|
25 |
+
self.noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.train_scheduler_betas)
|
26 |
+
|
27 |
+
self.version = version
|
28 |
+
self.model_type = model_type
|
29 |
+
self.guidance_type = guidance_type
|
30 |
+
self.guidance_scale = guidance_scale
|
31 |
+
|
32 |
+
def numpy_to_pil(self, images):
|
33 |
+
"""Convert a numpy image or a batch of images to a PIL image.
|
34 |
+
"""
|
35 |
+
if images.ndim == 3:
|
36 |
+
images = images[None, ...]
|
37 |
+
images = (images * 255).round().astype("uint8")
|
38 |
+
pil_images = [Image.fromarray(image) for image in images]
|
39 |
+
|
40 |
+
return pil_images
|
41 |
+
|
42 |
+
def generate(
|
43 |
+
self,
|
44 |
+
content_images,
|
45 |
+
style_images,
|
46 |
+
batch_size,
|
47 |
+
order,
|
48 |
+
num_inference_step,
|
49 |
+
content_encoder_downsample_size,
|
50 |
+
t_start=None,
|
51 |
+
t_end=None,
|
52 |
+
dm_size=(96, 96),
|
53 |
+
algorithm_type="dpmsolver++",
|
54 |
+
skip_type="time_uniform",
|
55 |
+
method="multistep",
|
56 |
+
correcting_x0_fn=None,
|
57 |
+
generator=None,
|
58 |
+
):
|
59 |
+
model_kwargs = {}
|
60 |
+
model_kwargs["version"] = self.version
|
61 |
+
model_kwargs["content_encoder_downsample_size"] = content_encoder_downsample_size
|
62 |
+
|
63 |
+
cond = []
|
64 |
+
cond.append(content_images)
|
65 |
+
cond.append(style_images)
|
66 |
+
|
67 |
+
uncond = []
|
68 |
+
uncond_content_images = torch.ones_like(content_images).to(self.model.device)
|
69 |
+
uncond_style_images = torch.ones_like(style_images).to(self.model.device)
|
70 |
+
uncond.append(uncond_content_images)
|
71 |
+
uncond.append(uncond_style_images)
|
72 |
+
|
73 |
+
# 2.Convert the discrete-time model to the continuous-time
|
74 |
+
model_fn = model_wrapper(
|
75 |
+
model=self.model,
|
76 |
+
noise_schedule=self.noise_schedule,
|
77 |
+
model_type=self.model_type,
|
78 |
+
model_kwargs=model_kwargs,
|
79 |
+
guidance_type=self.guidance_type,
|
80 |
+
condition=cond,
|
81 |
+
unconditional_condition=uncond,
|
82 |
+
guidance_scale=self.guidance_scale
|
83 |
+
)
|
84 |
+
|
85 |
+
# 3. Define dpm-solver and sample by multistep DPM-Solver.
|
86 |
+
# (We recommend multistep DPM-Solver for conditional sampling)
|
87 |
+
# You can adjust the `steps` to balance the computation costs and the sample quality.
|
88 |
+
dpm_solver = DPM_Solver(
|
89 |
+
model_fn=model_fn,
|
90 |
+
noise_schedule=self.noise_schedule,
|
91 |
+
algorithm_type=algorithm_type,
|
92 |
+
correcting_x0_fn=correcting_x0_fn
|
93 |
+
)
|
94 |
+
# If the DPM is defined on pixel-space images, you can further set `correcting_x0_fn="dynamic_thresholding"
|
95 |
+
|
96 |
+
# 4. Generate
|
97 |
+
# Sample gaussian noise to begin loop => [batch, 3, height, width]
|
98 |
+
x_T = torch.randn(
|
99 |
+
(batch_size, 3, dm_size[0], dm_size[1]),
|
100 |
+
generator=generator,
|
101 |
+
)
|
102 |
+
x_T = x_T.to(self.model.device)
|
103 |
+
|
104 |
+
x_sample = dpm_solver.sample(
|
105 |
+
x=x_T,
|
106 |
+
steps=num_inference_step,
|
107 |
+
order=order,
|
108 |
+
skip_type=skip_type,
|
109 |
+
method=method,
|
110 |
+
)
|
111 |
+
|
112 |
+
x_sample = (x_sample / 2 + 0.5).clamp(0, 1)
|
113 |
+
x_sample = x_sample.cpu().permute(0, 2, 3, 1).numpy()
|
114 |
+
|
115 |
+
x_images = self.numpy_to_pil(x_sample)
|
116 |
+
|
117 |
+
return x_images
|
src/model.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
from diffusers import ModelMixin
|
6 |
+
from diffusers.configuration_utils import (ConfigMixin,
|
7 |
+
register_to_config)
|
8 |
+
|
9 |
+
class FontDiffuserModel(ModelMixin, ConfigMixin):
|
10 |
+
"""Forward function for FontDiffuer with content encoder \
|
11 |
+
style encoder and unet.
|
12 |
+
"""
|
13 |
+
|
14 |
+
@register_to_config
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
unet,
|
18 |
+
style_encoder,
|
19 |
+
content_encoder,
|
20 |
+
):
|
21 |
+
super().__init__()
|
22 |
+
self.unet = unet
|
23 |
+
self.style_encoder = style_encoder
|
24 |
+
self.content_encoder = content_encoder
|
25 |
+
|
26 |
+
def forward(
|
27 |
+
self,
|
28 |
+
x_t,
|
29 |
+
timesteps,
|
30 |
+
style_images,
|
31 |
+
content_images,
|
32 |
+
content_encoder_downsample_size,
|
33 |
+
):
|
34 |
+
style_img_feature, _, _ = self.style_encoder(style_images)
|
35 |
+
|
36 |
+
batch_size, channel, height, width = style_img_feature.shape
|
37 |
+
style_hidden_states = style_img_feature.permute(0, 2, 3, 1).reshape(batch_size, height*width, channel)
|
38 |
+
|
39 |
+
# Get the content feature
|
40 |
+
content_img_feature, content_residual_features = self.content_encoder(content_images)
|
41 |
+
content_residual_features.append(content_img_feature)
|
42 |
+
# Get the content feature from reference image
|
43 |
+
style_content_feature, style_content_res_features = self.content_encoder(style_images)
|
44 |
+
style_content_res_features.append(style_content_feature)
|
45 |
+
|
46 |
+
input_hidden_states = [style_img_feature, content_residual_features, \
|
47 |
+
style_hidden_states, style_content_res_features]
|
48 |
+
|
49 |
+
out = self.unet(
|
50 |
+
x_t,
|
51 |
+
timesteps,
|
52 |
+
encoder_hidden_states=input_hidden_states,
|
53 |
+
content_encoder_downsample_size=content_encoder_downsample_size,
|
54 |
+
)
|
55 |
+
noise_pred = out[0]
|
56 |
+
offset_out_sum = out[1]
|
57 |
+
|
58 |
+
return noise_pred, offset_out_sum
|
59 |
+
|
60 |
+
|
61 |
+
class FontDiffuserModelDPM(ModelMixin, ConfigMixin):
|
62 |
+
"""DPM Forward function for FontDiffuer with content encoder \
|
63 |
+
style encoder and unet.
|
64 |
+
"""
|
65 |
+
@register_to_config
|
66 |
+
def __init__(
|
67 |
+
self,
|
68 |
+
unet,
|
69 |
+
style_encoder,
|
70 |
+
content_encoder,
|
71 |
+
):
|
72 |
+
super().__init__()
|
73 |
+
self.unet = unet
|
74 |
+
self.style_encoder = style_encoder
|
75 |
+
self.content_encoder = content_encoder
|
76 |
+
|
77 |
+
def forward(
|
78 |
+
self,
|
79 |
+
x_t,
|
80 |
+
timesteps,
|
81 |
+
cond,
|
82 |
+
content_encoder_downsample_size,
|
83 |
+
version,
|
84 |
+
):
|
85 |
+
content_images = cond[0]
|
86 |
+
style_images = cond[1]
|
87 |
+
|
88 |
+
style_img_feature, _, style_residual_features = self.style_encoder(style_images)
|
89 |
+
|
90 |
+
batch_size, channel, height, width = style_img_feature.shape
|
91 |
+
style_hidden_states = style_img_feature.permute(0, 2, 3, 1).reshape(batch_size, height*width, channel)
|
92 |
+
|
93 |
+
# Get content feature
|
94 |
+
content_img_feture, content_residual_features = self.content_encoder(content_images)
|
95 |
+
content_residual_features.append(content_img_feture)
|
96 |
+
# Get the content feature from reference image
|
97 |
+
style_content_feature, style_content_res_features = self.content_encoder(style_images)
|
98 |
+
style_content_res_features.append(style_content_feature)
|
99 |
+
|
100 |
+
input_hidden_states = [style_img_feature, content_residual_features, style_hidden_states, style_content_res_features]
|
101 |
+
|
102 |
+
out = self.unet(
|
103 |
+
x_t,
|
104 |
+
timesteps,
|
105 |
+
encoder_hidden_states=input_hidden_states,
|
106 |
+
content_encoder_downsample_size=content_encoder_downsample_size,
|
107 |
+
)
|
108 |
+
noise_pred = out[0]
|
109 |
+
|
110 |
+
return noise_pred
|
src/modules/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .content_encoder import ContentEncoder
|
2 |
+
from .style_encoder import StyleEncoder
|
3 |
+
from .unet import UNet
|
src/modules/attention.py
ADDED
@@ -0,0 +1,414 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
|
8 |
+
class SpatialTransformer(nn.Module):
|
9 |
+
"""
|
10 |
+
Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply
|
11 |
+
standard transformer action. Finally, reshape to image.
|
12 |
+
|
13 |
+
Parameters:
|
14 |
+
in_channels (:obj:`int`): The number of channels in the input and output.
|
15 |
+
n_heads (:obj:`int`): The number of heads to use for multi-head attention.
|
16 |
+
d_head (:obj:`int`): The number of channels in each head.
|
17 |
+
depth (:obj:`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
18 |
+
dropout (:obj:`float`, *optional*, defaults to 0.1): The dropout probability to use.
|
19 |
+
context_dim (:obj:`int`, *optional*): The number of context dimensions to use.
|
20 |
+
"""
|
21 |
+
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
in_channels: int,
|
25 |
+
n_heads: int,
|
26 |
+
d_head: int,
|
27 |
+
depth: int = 1,
|
28 |
+
dropout: float = 0.0,
|
29 |
+
num_groups: int = 32,
|
30 |
+
context_dim: Optional[int] = None,
|
31 |
+
):
|
32 |
+
super().__init__()
|
33 |
+
self.n_heads = n_heads
|
34 |
+
self.d_head = d_head
|
35 |
+
self.in_channels = in_channels
|
36 |
+
inner_dim = n_heads * d_head
|
37 |
+
self.norm = torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
38 |
+
|
39 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
40 |
+
|
41 |
+
self.transformer_blocks = nn.ModuleList(
|
42 |
+
[
|
43 |
+
BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim)
|
44 |
+
for d in range(depth)
|
45 |
+
]
|
46 |
+
)
|
47 |
+
|
48 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
49 |
+
|
50 |
+
def _set_attention_slice(self, slice_size):
|
51 |
+
for block in self.transformer_blocks:
|
52 |
+
block._set_attention_slice(slice_size)
|
53 |
+
|
54 |
+
def forward(self, hidden_states, context=None):
|
55 |
+
# note: if no context is given, cross-attention defaults to self-attention
|
56 |
+
batch, channel, height, weight = hidden_states.shape
|
57 |
+
residual = hidden_states
|
58 |
+
hidden_states = self.norm(hidden_states)
|
59 |
+
hidden_states = self.proj_in(hidden_states)
|
60 |
+
inner_dim = hidden_states.shape[1]
|
61 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) # here change the shape torch.Size([1, 4096, 128])
|
62 |
+
for block in self.transformer_blocks:
|
63 |
+
hidden_states = block(hidden_states, context=context) # hidden_states: torch.Size([1, 4096, 128])
|
64 |
+
hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2) # torch.Size([1, 128, 64, 64])
|
65 |
+
hidden_states = self.proj_out(hidden_states)
|
66 |
+
return hidden_states + residual
|
67 |
+
|
68 |
+
|
69 |
+
class BasicTransformerBlock(nn.Module):
|
70 |
+
r"""
|
71 |
+
A basic Transformer block.
|
72 |
+
|
73 |
+
Parameters:
|
74 |
+
dim (:obj:`int`): The number of channels in the input and output.
|
75 |
+
n_heads (:obj:`int`): The number of heads to use for multi-head attention.
|
76 |
+
d_head (:obj:`int`): The number of channels in each head.
|
77 |
+
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
78 |
+
context_dim (:obj:`int`, *optional*): The size of the context vector for cross attention.
|
79 |
+
gated_ff (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use a gated feed-forward network.
|
80 |
+
checkpoint (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use checkpointing.
|
81 |
+
"""
|
82 |
+
|
83 |
+
def __init__(
|
84 |
+
self,
|
85 |
+
dim: int,
|
86 |
+
n_heads: int,
|
87 |
+
d_head: int,
|
88 |
+
dropout=0.0,
|
89 |
+
context_dim: Optional[int] = None,
|
90 |
+
gated_ff: bool = True,
|
91 |
+
checkpoint: bool = True,
|
92 |
+
):
|
93 |
+
super().__init__()
|
94 |
+
self.attn1 = CrossAttention(
|
95 |
+
query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
96 |
+
) # is a self-attention
|
97 |
+
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
|
98 |
+
self.attn2 = CrossAttention(
|
99 |
+
query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout
|
100 |
+
) # is self-attn if context is none
|
101 |
+
self.norm1 = nn.LayerNorm(dim)
|
102 |
+
self.norm2 = nn.LayerNorm(dim)
|
103 |
+
self.norm3 = nn.LayerNorm(dim)
|
104 |
+
self.checkpoint = checkpoint
|
105 |
+
|
106 |
+
def _set_attention_slice(self, slice_size):
|
107 |
+
self.attn1._slice_size = slice_size
|
108 |
+
self.attn2._slice_size = slice_size
|
109 |
+
|
110 |
+
def forward(self, hidden_states, context=None):
|
111 |
+
hidden_states = hidden_states.contiguous() if hidden_states.device.type == "mps" else hidden_states
|
112 |
+
hidden_states = self.attn1(self.norm1(hidden_states)) + hidden_states # hidden_states: torch.Size([1, 4096, 128])
|
113 |
+
hidden_states = self.attn2(self.norm2(hidden_states), context=context) + hidden_states
|
114 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
115 |
+
return hidden_states
|
116 |
+
|
117 |
+
|
118 |
+
class FeedForward(nn.Module):
|
119 |
+
r"""
|
120 |
+
A feed-forward layer.
|
121 |
+
|
122 |
+
Parameters:
|
123 |
+
dim (:obj:`int`): The number of channels in the input.
|
124 |
+
dim_out (:obj:`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`.
|
125 |
+
mult (:obj:`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension.
|
126 |
+
glu (:obj:`bool`, *optional*, defaults to :obj:`False`): Whether to use GLU activation.
|
127 |
+
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
128 |
+
"""
|
129 |
+
|
130 |
+
def __init__(
|
131 |
+
self, dim: int, dim_out: Optional[int] = None, mult: int = 4, glu: bool = False, dropout: float = 0.0
|
132 |
+
):
|
133 |
+
super().__init__()
|
134 |
+
inner_dim = int(dim * mult)
|
135 |
+
dim_out = dim_out if dim_out is not None else dim
|
136 |
+
project_in = GEGLU(dim, inner_dim)
|
137 |
+
|
138 |
+
self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out))
|
139 |
+
|
140 |
+
def forward(self, hidden_states):
|
141 |
+
return self.net(hidden_states)
|
142 |
+
|
143 |
+
|
144 |
+
class GEGLU(nn.Module):
|
145 |
+
r"""
|
146 |
+
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202.
|
147 |
+
|
148 |
+
Parameters:
|
149 |
+
dim_in (:obj:`int`): The number of channels in the input.
|
150 |
+
dim_out (:obj:`int`): The number of channels in the output.
|
151 |
+
"""
|
152 |
+
|
153 |
+
def __init__(self, dim_in: int, dim_out: int):
|
154 |
+
super().__init__()
|
155 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
156 |
+
|
157 |
+
def forward(self, hidden_states):
|
158 |
+
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1)
|
159 |
+
return hidden_states * F.gelu(gate)
|
160 |
+
|
161 |
+
|
162 |
+
class CrossAttention(nn.Module):
|
163 |
+
r"""
|
164 |
+
A cross attention layer.
|
165 |
+
|
166 |
+
Parameters:
|
167 |
+
query_dim (:obj:`int`): The number of channels in the query.
|
168 |
+
context_dim (:obj:`int`, *optional*):
|
169 |
+
The number of channels in the context. If not given, defaults to `query_dim`.
|
170 |
+
heads (:obj:`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention.
|
171 |
+
dim_head (:obj:`int`, *optional*, defaults to 64): The number of channels in each head.
|
172 |
+
dropout (:obj:`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
173 |
+
"""
|
174 |
+
|
175 |
+
def __init__(
|
176 |
+
self, query_dim: int, context_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, dropout: int = 0.0
|
177 |
+
):
|
178 |
+
super().__init__()
|
179 |
+
inner_dim = dim_head * heads
|
180 |
+
context_dim = context_dim if context_dim is not None else query_dim
|
181 |
+
|
182 |
+
self.scale = dim_head**-0.5
|
183 |
+
self.heads = heads
|
184 |
+
# for slice_size > 0 the attention score computation
|
185 |
+
# is split across the batch axis to save memory
|
186 |
+
# You can set slice_size with `set_attention_slice`
|
187 |
+
self._slice_size = None
|
188 |
+
|
189 |
+
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
|
190 |
+
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
|
191 |
+
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
|
192 |
+
|
193 |
+
self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
|
194 |
+
|
195 |
+
def reshape_heads_to_batch_dim(self, tensor):
|
196 |
+
batch_size, seq_len, dim = tensor.shape
|
197 |
+
head_size = self.heads
|
198 |
+
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size)
|
199 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size)
|
200 |
+
return tensor
|
201 |
+
|
202 |
+
def reshape_batch_dim_to_heads(self, tensor):
|
203 |
+
batch_size, seq_len, dim = tensor.shape
|
204 |
+
head_size = self.heads
|
205 |
+
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim)
|
206 |
+
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size)
|
207 |
+
return tensor
|
208 |
+
|
209 |
+
def forward(self, hidden_states, context=None, mask=None):
|
210 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
211 |
+
|
212 |
+
query = self.to_q(hidden_states)
|
213 |
+
context = context if context is not None else hidden_states
|
214 |
+
key = self.to_k(context)
|
215 |
+
value = self.to_v(context)
|
216 |
+
|
217 |
+
dim = query.shape[-1]
|
218 |
+
|
219 |
+
query = self.reshape_heads_to_batch_dim(query)
|
220 |
+
key = self.reshape_heads_to_batch_dim(key)
|
221 |
+
value = self.reshape_heads_to_batch_dim(value)
|
222 |
+
|
223 |
+
# TODO(PVP) - mask is currently never used. Remember to re-implement when used
|
224 |
+
|
225 |
+
# attention, what we cannot get enough of
|
226 |
+
|
227 |
+
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
228 |
+
hidden_states = self._attention(query, key, value)
|
229 |
+
else:
|
230 |
+
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim)
|
231 |
+
|
232 |
+
return self.to_out(hidden_states)
|
233 |
+
|
234 |
+
def _attention(self, query, key, value):
|
235 |
+
# TODO: use baddbmm for better performance
|
236 |
+
attention_scores = torch.matmul(query, key.transpose(-1, -2)) * self.scale
|
237 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
238 |
+
# compute attention output
|
239 |
+
hidden_states = torch.matmul(attention_probs, value)
|
240 |
+
# reshape hidden_states
|
241 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
242 |
+
return hidden_states
|
243 |
+
|
244 |
+
def _sliced_attention(self, query, key, value, sequence_length, dim):
|
245 |
+
batch_size_attention = query.shape[0]
|
246 |
+
hidden_states = torch.zeros(
|
247 |
+
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype
|
248 |
+
)
|
249 |
+
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0]
|
250 |
+
for i in range(hidden_states.shape[0] // slice_size):
|
251 |
+
start_idx = i * slice_size
|
252 |
+
end_idx = (i + 1) * slice_size
|
253 |
+
attn_slice = (
|
254 |
+
torch.matmul(query[start_idx:end_idx], key[start_idx:end_idx].transpose(1, 2)) * self.scale
|
255 |
+
) # TODO: use baddbmm for better performance
|
256 |
+
attn_slice = attn_slice.softmax(dim=-1)
|
257 |
+
attn_slice = torch.matmul(attn_slice, value[start_idx:end_idx])
|
258 |
+
|
259 |
+
hidden_states[start_idx:end_idx] = attn_slice
|
260 |
+
|
261 |
+
# reshape hidden_states
|
262 |
+
hidden_states = self.reshape_batch_dim_to_heads(hidden_states)
|
263 |
+
return hidden_states
|
264 |
+
|
265 |
+
|
266 |
+
class OffsetRefStrucInter(nn.Module):
|
267 |
+
|
268 |
+
def __init__(
|
269 |
+
self,
|
270 |
+
res_in_channels: int,
|
271 |
+
style_feat_in_channels: int,
|
272 |
+
n_heads: int,
|
273 |
+
num_groups: int = 32,
|
274 |
+
dropout: float = 0.0,
|
275 |
+
gated_ff: bool = True,
|
276 |
+
):
|
277 |
+
super().__init__()
|
278 |
+
# style feat projecter
|
279 |
+
self.style_proj_in = nn.Conv2d(style_feat_in_channels, style_feat_in_channels, kernel_size=1, stride=1, padding=0)
|
280 |
+
self.gnorm_s = torch.nn.GroupNorm(num_groups=num_groups, num_channels=style_feat_in_channels, eps=1e-6, affine=True)
|
281 |
+
self.ln_s = nn.LayerNorm(style_feat_in_channels)
|
282 |
+
|
283 |
+
# content feat projecter
|
284 |
+
self.content_proj_in = nn.Conv2d(res_in_channels, res_in_channels, kernel_size=1, stride=1, padding=0)
|
285 |
+
self.gnorm_c = torch.nn.GroupNorm(num_groups=num_groups, num_channels=res_in_channels, eps=1e-6, affine=True)
|
286 |
+
self.ln_c = nn.LayerNorm(res_in_channels)
|
287 |
+
|
288 |
+
# cross-attention
|
289 |
+
# dim_head is the middle dealing dimension, output dimension will be change to quert_dim by Linear
|
290 |
+
self.cross_attention = CrossAttention(
|
291 |
+
query_dim=style_feat_in_channels, context_dim=res_in_channels, heads=n_heads, dim_head=res_in_channels, dropout=dropout
|
292 |
+
)
|
293 |
+
|
294 |
+
# FFN
|
295 |
+
self.ff = FeedForward(style_feat_in_channels, dropout=dropout, glu=gated_ff)
|
296 |
+
self.ln_ff = nn.LayerNorm(style_feat_in_channels)
|
297 |
+
|
298 |
+
self.gnorm_out = torch.nn.GroupNorm(num_groups=num_groups, num_channels=style_feat_in_channels, eps=1e-6, affine=True)
|
299 |
+
self.proj_out = nn.Conv2d(style_feat_in_channels, 1*2*3*3, kernel_size=1, stride=1, padding=0)
|
300 |
+
|
301 |
+
def forward(self, res_hidden_states, style_content_hidden_states):
|
302 |
+
batch, c_channel, height, width = res_hidden_states.shape
|
303 |
+
_, s_channel, _, _ = style_content_hidden_states.shape
|
304 |
+
# style projecter
|
305 |
+
style_content_hidden_states = self.gnorm_s(style_content_hidden_states)
|
306 |
+
style_content_hidden_states = self.style_proj_in(style_content_hidden_states)
|
307 |
+
|
308 |
+
style_content_hidden_states = style_content_hidden_states.permute(0, 2, 3, 1).reshape(batch, height*width, s_channel)
|
309 |
+
style_content_hidden_states = self.ln_s(style_content_hidden_states)
|
310 |
+
|
311 |
+
# content projecter
|
312 |
+
res_hidden_states = self.gnorm_c(res_hidden_states)
|
313 |
+
res_hidden_states = self.content_proj_in(res_hidden_states)
|
314 |
+
|
315 |
+
res_hidden_states = res_hidden_states.permute(0, 2, 3, 1).reshape(batch, height*width, c_channel)
|
316 |
+
res_hidden_states = self.ln_c(res_hidden_states)
|
317 |
+
|
318 |
+
# style and content cross-attention
|
319 |
+
hidden_states = self.cross_attention(style_content_hidden_states, context=res_hidden_states)
|
320 |
+
|
321 |
+
# ffn
|
322 |
+
hidden_states = self.ff(self.ln_ff(hidden_states)) + hidden_states
|
323 |
+
|
324 |
+
# reshape
|
325 |
+
_, _, c = hidden_states.shape
|
326 |
+
reshape_out = hidden_states.permute(0, 2, 1).reshape(batch, c, height, width)
|
327 |
+
|
328 |
+
# projert out
|
329 |
+
reshape_out = self.gnorm_out(reshape_out)
|
330 |
+
offset_out = self.proj_out(reshape_out)
|
331 |
+
|
332 |
+
return offset_out
|
333 |
+
|
334 |
+
|
335 |
+
class SELayer(nn.Module):
|
336 |
+
def __init__(self, channel, reduction=16):
|
337 |
+
super().__init__()
|
338 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
339 |
+
self.fc = nn.Sequential(
|
340 |
+
nn.Linear(channel, channel // reduction, bias=False),
|
341 |
+
# nn.ReLU(inplace=True),
|
342 |
+
nn.SiLU(),
|
343 |
+
nn.Linear(channel // reduction, channel, bias=False),
|
344 |
+
nn.Sigmoid()
|
345 |
+
)
|
346 |
+
|
347 |
+
def forward(self, x):
|
348 |
+
b, c, _, _ = x.size()
|
349 |
+
y = self.avg_pool(x).view(b, c)
|
350 |
+
y = self.fc(y).view(b, c, 1, 1)
|
351 |
+
return x * y.expand_as(x)
|
352 |
+
|
353 |
+
|
354 |
+
class Mish(torch.nn.Module):
|
355 |
+
def forward(self, hidden_states):
|
356 |
+
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
357 |
+
|
358 |
+
|
359 |
+
class ChannelAttnBlock(nn.Module):
|
360 |
+
"""This is the Channel Attention in MCA.
|
361 |
+
"""
|
362 |
+
def __init__(
|
363 |
+
self,
|
364 |
+
in_channels,
|
365 |
+
out_channels,
|
366 |
+
groups=32,
|
367 |
+
groups_out=None,
|
368 |
+
eps=1e-6,
|
369 |
+
non_linearity="swish",
|
370 |
+
channel_attn=False,
|
371 |
+
reduction=32):
|
372 |
+
super().__init__()
|
373 |
+
|
374 |
+
if groups_out is None:
|
375 |
+
groups_out = groups
|
376 |
+
|
377 |
+
self.norm1 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
378 |
+
self.conv1 = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1)
|
379 |
+
|
380 |
+
if non_linearity == "swish":
|
381 |
+
self.nonlinearity = lambda x: F.silu(x)
|
382 |
+
elif non_linearity == "mish":
|
383 |
+
self.nonlinearity = Mish()
|
384 |
+
elif non_linearity == "silu":
|
385 |
+
self.nonlinearity = nn.SiLU()
|
386 |
+
|
387 |
+
self.channel_attn = channel_attn
|
388 |
+
if self.channel_attn:
|
389 |
+
# SE Attention
|
390 |
+
self.se_channel_attn = SELayer(channel=in_channels, reduction=reduction)
|
391 |
+
|
392 |
+
# Down channel: Use the conv1*1 to down the channel wise
|
393 |
+
self.norm3 = nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
394 |
+
self.down_channel = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1) # conv1*1
|
395 |
+
|
396 |
+
def forward(self, input, content_feature):
|
397 |
+
|
398 |
+
concat_feature = torch.cat([input, content_feature], dim=1)
|
399 |
+
hidden_states = concat_feature
|
400 |
+
|
401 |
+
hidden_states = self.norm1(hidden_states)
|
402 |
+
hidden_states = self.nonlinearity(hidden_states)
|
403 |
+
hidden_states = self.conv1(hidden_states)
|
404 |
+
|
405 |
+
if self.channel_attn:
|
406 |
+
hidden_states = self.se_channel_attn(hidden_states)
|
407 |
+
hidden_states = hidden_states + concat_feature
|
408 |
+
|
409 |
+
# Down channel
|
410 |
+
hidden_states = self.norm3(hidden_states)
|
411 |
+
hidden_states = self.nonlinearity(hidden_states)
|
412 |
+
hidden_states = self.down_channel(hidden_states)
|
413 |
+
|
414 |
+
return hidden_states
|
src/modules/content_encoder.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch.nn import init
|
7 |
+
from torch.nn import Parameter as P
|
8 |
+
|
9 |
+
from diffusers import ModelMixin
|
10 |
+
from diffusers.configuration_utils import (ConfigMixin,
|
11 |
+
register_to_config)
|
12 |
+
|
13 |
+
|
14 |
+
def proj(x, y):
|
15 |
+
return torch.mm(y, x.t()) * y / torch.mm(y, y.t())
|
16 |
+
|
17 |
+
|
18 |
+
def gram_schmidt(x, ys):
|
19 |
+
for y in ys:
|
20 |
+
x = x - proj(x, y)
|
21 |
+
return x
|
22 |
+
|
23 |
+
|
24 |
+
def power_iteration(W, u_, update=True, eps=1e-12):
|
25 |
+
us, vs, svs = [], [], []
|
26 |
+
for i, u in enumerate(u_):
|
27 |
+
with torch.no_grad():
|
28 |
+
v = torch.matmul(u, W)
|
29 |
+
v = F.normalize(gram_schmidt(v, vs), eps=eps)
|
30 |
+
vs += [v]
|
31 |
+
u = torch.matmul(v, W.t())
|
32 |
+
u = F.normalize(gram_schmidt(u, us), eps=eps)
|
33 |
+
us += [u]
|
34 |
+
if update:
|
35 |
+
u_[i][:] = u
|
36 |
+
svs += [torch.squeeze(torch.matmul(torch.matmul(v, W.t()), u.t()))]
|
37 |
+
return svs, us, vs
|
38 |
+
|
39 |
+
|
40 |
+
class LinearBlock(nn.Module):
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
in_dim,
|
44 |
+
out_dim,
|
45 |
+
norm='none',
|
46 |
+
act='relu',
|
47 |
+
use_sn=False
|
48 |
+
):
|
49 |
+
super(LinearBlock, self).__init__()
|
50 |
+
use_bias = True
|
51 |
+
self.fc = nn.Linear(in_dim, out_dim, bias=use_bias)
|
52 |
+
if use_sn:
|
53 |
+
self.fc = nn.utils.spectral_norm(self.fc)
|
54 |
+
|
55 |
+
# initialize normalization
|
56 |
+
norm_dim = out_dim
|
57 |
+
if norm == 'bn':
|
58 |
+
self.norm = nn.BatchNorm1d(norm_dim)
|
59 |
+
elif norm == 'in':
|
60 |
+
self.norm = nn.InstanceNorm1d(norm_dim)
|
61 |
+
elif norm == 'none':
|
62 |
+
self.norm = None
|
63 |
+
else:
|
64 |
+
assert 0, "Unsupported normalization: {}".format(norm)
|
65 |
+
|
66 |
+
# initialize activation
|
67 |
+
if act == 'relu':
|
68 |
+
self.activation = nn.ReLU(inplace=True)
|
69 |
+
elif act == 'lrelu':
|
70 |
+
self.activation = nn.LeakyReLU(0.2, inplace=True)
|
71 |
+
elif act == 'tanh':
|
72 |
+
self.activation = nn.Tanh()
|
73 |
+
elif act == 'none':
|
74 |
+
self.activation = None
|
75 |
+
else:
|
76 |
+
assert 0, "Unsupported activation: {}".format(act)
|
77 |
+
|
78 |
+
def forward(self, x):
|
79 |
+
out = self.fc(x)
|
80 |
+
if self.norm:
|
81 |
+
out = self.norm(out)
|
82 |
+
if self.activation:
|
83 |
+
out = self.activation(out)
|
84 |
+
return out
|
85 |
+
|
86 |
+
|
87 |
+
class MLP(nn.Module):
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
nf_in,
|
91 |
+
nf_out,
|
92 |
+
nf_mlp,
|
93 |
+
num_blocks,
|
94 |
+
norm,
|
95 |
+
act,
|
96 |
+
use_sn =False
|
97 |
+
):
|
98 |
+
super(MLP,self).__init__()
|
99 |
+
self.model = nn.ModuleList()
|
100 |
+
nf = nf_mlp
|
101 |
+
self.model.append(LinearBlock(nf_in, nf, norm = norm, act = act, use_sn = use_sn))
|
102 |
+
for _ in range((num_blocks - 2)):
|
103 |
+
self.model.append(LinearBlock(nf, nf, norm=norm, act=act, use_sn=use_sn))
|
104 |
+
self.model.append(LinearBlock(nf, nf_out, norm='none', act ='none', use_sn = use_sn))
|
105 |
+
self.model = nn.Sequential(*self.model)
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
return self.model(x.view(x.size(0), -1))
|
109 |
+
|
110 |
+
|
111 |
+
class SN(object):
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
num_svs,
|
115 |
+
num_itrs,
|
116 |
+
num_outputs,
|
117 |
+
transpose=False,
|
118 |
+
eps=1e-12
|
119 |
+
):
|
120 |
+
self.num_itrs = num_itrs
|
121 |
+
self.num_svs = num_svs
|
122 |
+
self.transpose = transpose
|
123 |
+
self.eps = eps
|
124 |
+
for i in range(self.num_svs):
|
125 |
+
self.register_buffer('u%d' % i, torch.randn(1, num_outputs))
|
126 |
+
self.register_buffer('sv%d' % i, torch.ones(1))
|
127 |
+
|
128 |
+
@property
|
129 |
+
def u(self):
|
130 |
+
return [getattr(self, 'u%d' % i) for i in range(self.num_svs)]
|
131 |
+
|
132 |
+
@property
|
133 |
+
def sv(self):
|
134 |
+
return [getattr(self, 'sv%d' % i) for i in range(self.num_svs)]
|
135 |
+
|
136 |
+
def W_(self):
|
137 |
+
W_mat = self.weight.view(self.weight.size(0), -1)
|
138 |
+
if self.transpose:
|
139 |
+
W_mat = W_mat.t()
|
140 |
+
for _ in range(self.num_itrs):
|
141 |
+
svs, us, vs = power_iteration(W_mat, self.u, update=self.training, eps=self.eps)
|
142 |
+
if self.training:
|
143 |
+
with torch.no_grad():
|
144 |
+
for i, sv in enumerate(svs):
|
145 |
+
self.sv[i][:] = sv
|
146 |
+
return self.weight / svs[0]
|
147 |
+
|
148 |
+
class SNConv2d(nn.Conv2d, SN):
|
149 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
150 |
+
padding=0, dilation=1, groups=1, bias=True,
|
151 |
+
num_svs=1, num_itrs=1, eps=1e-12):
|
152 |
+
nn.Conv2d.__init__(self, in_channels, out_channels, kernel_size, stride,
|
153 |
+
padding, dilation, groups, bias)
|
154 |
+
SN.__init__(self, num_svs, num_itrs, out_channels, eps=eps)
|
155 |
+
|
156 |
+
def forward(self, x):
|
157 |
+
return F.conv2d(x, self.W_(), self.bias, self.stride,
|
158 |
+
self.padding, self.dilation, self.groups)
|
159 |
+
|
160 |
+
def forward_wo_sn(self, x):
|
161 |
+
return F.conv2d(x, self.weight, self.bias, self.stride,
|
162 |
+
self.padding, self.dilation, self.groups)
|
163 |
+
|
164 |
+
|
165 |
+
class SNLinear(nn.Linear, SN):
|
166 |
+
def __init__(self, in_features, out_features, bias=True,
|
167 |
+
num_svs=1, num_itrs=1, eps=1e-12):
|
168 |
+
nn.Linear.__init__(self, in_features, out_features, bias)
|
169 |
+
SN.__init__(self, num_svs, num_itrs, out_features, eps=eps)
|
170 |
+
|
171 |
+
def forward(self, x):
|
172 |
+
return F.linear(x, self.W_(), self.bias)
|
173 |
+
|
174 |
+
|
175 |
+
class Attention(nn.Module):
|
176 |
+
def __init__(
|
177 |
+
self,
|
178 |
+
ch,
|
179 |
+
which_conv=SNConv2d,
|
180 |
+
name='attention'
|
181 |
+
):
|
182 |
+
super(Attention, self).__init__()
|
183 |
+
self.ch = ch
|
184 |
+
self.which_conv = which_conv
|
185 |
+
self.theta = self.which_conv(self.ch, self.ch // 8, kernel_size=1, padding=0, bias=False)
|
186 |
+
self.phi = self.which_conv(self.ch, self.ch // 8, kernel_size=1, padding=0, bias=False)
|
187 |
+
self.g = self.which_conv(self.ch, self.ch // 2, kernel_size=1, padding=0, bias=False)
|
188 |
+
self.o = self.which_conv(self.ch // 2, self.ch, kernel_size=1, padding=0, bias=False)
|
189 |
+
# Learnable gain parameter
|
190 |
+
self.gamma = P(torch.tensor(0.), requires_grad=True)
|
191 |
+
|
192 |
+
def forward(self, x, y=None):
|
193 |
+
theta = self.theta(x)
|
194 |
+
phi = F.max_pool2d(self.phi(x), [2,2])
|
195 |
+
g = F.max_pool2d(self.g(x), [2,2])
|
196 |
+
|
197 |
+
theta = theta.view(-1, self. ch // 8, x.shape[2] * x.shape[3])
|
198 |
+
phi = phi.view(-1, self. ch // 8, x.shape[2] * x.shape[3] // 4)
|
199 |
+
g = g.view(-1, self. ch // 2, x.shape[2] * x.shape[3] // 4)
|
200 |
+
|
201 |
+
beta = F.softmax(torch.bmm(theta.transpose(1, 2), phi), -1)
|
202 |
+
|
203 |
+
o = self.o(torch.bmm(g, beta.transpose(1,2)).view(-1, self.ch // 2, x.shape[2], x.shape[3]))
|
204 |
+
return self.gamma * o + x
|
205 |
+
|
206 |
+
|
207 |
+
class DBlock(nn.Module):
|
208 |
+
def __init__(self, in_channels, out_channels, which_conv=SNConv2d, wide=True,
|
209 |
+
preactivation=False, activation=None, downsample=None,):
|
210 |
+
super(DBlock, self).__init__()
|
211 |
+
|
212 |
+
self.in_channels, self.out_channels = in_channels, out_channels
|
213 |
+
|
214 |
+
self.hidden_channels = self.out_channels if wide else self.in_channels
|
215 |
+
self.which_conv = which_conv
|
216 |
+
self.preactivation = preactivation
|
217 |
+
self.activation = activation
|
218 |
+
self.downsample = downsample
|
219 |
+
|
220 |
+
# Conv layers
|
221 |
+
self.conv1 = self.which_conv(self.in_channels, self.hidden_channels)
|
222 |
+
self.conv2 = self.which_conv(self.hidden_channels, self.out_channels)
|
223 |
+
self.learnable_sc = True if (in_channels != out_channels) or downsample else False
|
224 |
+
if self.learnable_sc:
|
225 |
+
self.conv_sc = self.which_conv(in_channels, out_channels,
|
226 |
+
kernel_size=1, padding=0)
|
227 |
+
def shortcut(self, x):
|
228 |
+
if self.preactivation:
|
229 |
+
if self.learnable_sc:
|
230 |
+
x = self.conv_sc(x)
|
231 |
+
if self.downsample:
|
232 |
+
x = self.downsample(x)
|
233 |
+
else:
|
234 |
+
if self.downsample:
|
235 |
+
x = self.downsample(x)
|
236 |
+
if self.learnable_sc:
|
237 |
+
x = self.conv_sc(x)
|
238 |
+
return x
|
239 |
+
|
240 |
+
def forward(self, x):
|
241 |
+
if self.preactivation:
|
242 |
+
h = F.relu(x)
|
243 |
+
else:
|
244 |
+
h = x
|
245 |
+
h = self.conv1(h)
|
246 |
+
h = self.conv2(self.activation(h))
|
247 |
+
if self.downsample:
|
248 |
+
h = self.downsample(h)
|
249 |
+
|
250 |
+
return h + self.shortcut(x)
|
251 |
+
|
252 |
+
|
253 |
+
class GBlock(nn.Module):
|
254 |
+
def __init__(self, in_channels, out_channels,
|
255 |
+
which_conv=nn.Conv2d,which_bn= nn.BatchNorm2d, activation=None,
|
256 |
+
upsample=None):
|
257 |
+
super(GBlock, self).__init__()
|
258 |
+
|
259 |
+
self.in_channels, self.out_channels = in_channels, out_channels
|
260 |
+
self.which_conv,self.which_bn =which_conv, which_bn
|
261 |
+
self.activation = activation
|
262 |
+
self.upsample = upsample
|
263 |
+
# Conv layers
|
264 |
+
self.conv1 = self.which_conv(self.in_channels, self.out_channels)
|
265 |
+
self.conv2 = self.which_conv(self.out_channels, self.out_channels)
|
266 |
+
self.learnable_sc = in_channels != out_channels or upsample
|
267 |
+
if self.learnable_sc:
|
268 |
+
self.conv_sc = self.which_conv(in_channels, out_channels,
|
269 |
+
kernel_size=1, padding=0)
|
270 |
+
# Batchnorm layers
|
271 |
+
self.bn1 = self.which_bn(in_channels)
|
272 |
+
self.bn2 = self.which_bn(out_channels)
|
273 |
+
# upsample layers
|
274 |
+
self.upsample = upsample
|
275 |
+
|
276 |
+
|
277 |
+
def forward(self, x):
|
278 |
+
h = self.activation(self.bn1(x))
|
279 |
+
if self.upsample:
|
280 |
+
h = self.upsample(h)
|
281 |
+
x = self.upsample(x)
|
282 |
+
h = self.conv1(h)
|
283 |
+
h = self.activation(self.bn2(h))
|
284 |
+
h = self.conv2(h)
|
285 |
+
if self.learnable_sc:
|
286 |
+
x = self.conv_sc(x)
|
287 |
+
return h + x
|
288 |
+
|
289 |
+
|
290 |
+
class GBlock2(nn.Module):
|
291 |
+
def __init__(self, in_channels, out_channels,
|
292 |
+
which_conv=nn.Conv2d, activation=None,
|
293 |
+
upsample=None, skip_connection = True):
|
294 |
+
super(GBlock2, self).__init__()
|
295 |
+
|
296 |
+
self.in_channels, self.out_channels = in_channels, out_channels
|
297 |
+
self.which_conv = which_conv
|
298 |
+
self.activation = activation
|
299 |
+
self.upsample = upsample
|
300 |
+
|
301 |
+
# Conv layers
|
302 |
+
self.conv1 = self.which_conv(self.in_channels, self.out_channels)
|
303 |
+
self.conv2 = self.which_conv(self.out_channels, self.out_channels)
|
304 |
+
self.learnable_sc = in_channels != out_channels or upsample
|
305 |
+
if self.learnable_sc:
|
306 |
+
self.conv_sc = self.which_conv(in_channels, out_channels,
|
307 |
+
kernel_size=1, padding=0)
|
308 |
+
|
309 |
+
# upsample layers
|
310 |
+
self.upsample = upsample
|
311 |
+
self.skip_connection = skip_connection
|
312 |
+
|
313 |
+
def forward(self, x):
|
314 |
+
h = self.activation(x)
|
315 |
+
if self.upsample:
|
316 |
+
h = self.upsample(h)
|
317 |
+
x = self.upsample(x)
|
318 |
+
h = self.conv1(h)
|
319 |
+
|
320 |
+
h = self.activation(h)
|
321 |
+
h = self.conv2(h)
|
322 |
+
|
323 |
+
if self.learnable_sc:
|
324 |
+
x = self.conv_sc(x)
|
325 |
+
|
326 |
+
|
327 |
+
if self.skip_connection:
|
328 |
+
out = h + x
|
329 |
+
else:
|
330 |
+
out = h
|
331 |
+
return out
|
332 |
+
|
333 |
+
def content_encoder_arch(ch =64,out_channel_multiplier = 1, input_nc = 3):
|
334 |
+
arch = {}
|
335 |
+
n=2
|
336 |
+
arch[80] = {'in_channels': [input_nc] + [ch*item for item in [1,2]],
|
337 |
+
'out_channels' : [item * ch for item in [1,2,4]],
|
338 |
+
'resolution': [40,20,10]}
|
339 |
+
arch[96] = {'in_channels': [input_nc] + [ch*item for item in [1,2]],
|
340 |
+
'out_channels' : [item * ch for item in [1,2,4]],
|
341 |
+
'resolution': [48,24,12]}
|
342 |
+
|
343 |
+
arch[128] = {'in_channels': [input_nc] + [ch*item for item in [1,2,4,8]],
|
344 |
+
'out_channels' : [item * ch for item in [1,2,4,8,16]],
|
345 |
+
'resolution': [64,32,16,8,4]}
|
346 |
+
|
347 |
+
arch[256] = {'in_channels':[input_nc]+[ch*item for item in [1,2,4,8,8]],
|
348 |
+
'out_channels':[item*ch for item in [1,2,4,8,8,16]],
|
349 |
+
'resolution': [128,64,32,16,8,4]}
|
350 |
+
return arch
|
351 |
+
|
352 |
+
class ContentEncoder(ModelMixin, ConfigMixin):
|
353 |
+
|
354 |
+
@register_to_config
|
355 |
+
def __init__(self, G_ch=64, G_wide=True, resolution=128,
|
356 |
+
G_kernel_size=3, G_attn='64_32_16_8', n_classes=1000,
|
357 |
+
num_G_SVs=1, num_G_SV_itrs=1, G_activation=nn.ReLU(inplace=False),
|
358 |
+
SN_eps=1e-12, output_dim=1, G_fp16=False,
|
359 |
+
G_init='N02', G_param='SN', nf_mlp = 512, nEmbedding = 256, input_nc = 3,output_nc = 3):
|
360 |
+
super(ContentEncoder, self).__init__()
|
361 |
+
|
362 |
+
self.ch = G_ch
|
363 |
+
self.G_wide = G_wide
|
364 |
+
self.resolution = resolution
|
365 |
+
self.kernel_size = G_kernel_size
|
366 |
+
self.attention = G_attn
|
367 |
+
self.n_classes = n_classes
|
368 |
+
self.activation = G_activation
|
369 |
+
self.init = G_init
|
370 |
+
self.G_param = G_param
|
371 |
+
self.SN_eps = SN_eps
|
372 |
+
self.fp16 = G_fp16
|
373 |
+
|
374 |
+
if self.resolution == 96:
|
375 |
+
self.save_featrues = [0,1,2,3,4]
|
376 |
+
elif self.resolution == 80:
|
377 |
+
self.save_featrues = [0,1,2,3,4]
|
378 |
+
elif self.resolution == 128:
|
379 |
+
self.save_featrues = [0,1,2,3,4]
|
380 |
+
elif self.resolution == 256:
|
381 |
+
self.save_featrues = [0,1,2,3,4,5]
|
382 |
+
|
383 |
+
self.out_channel_nultipiler = 1
|
384 |
+
self.arch = content_encoder_arch(self.ch, self.out_channel_nultipiler,input_nc)[resolution]
|
385 |
+
|
386 |
+
if self.G_param == 'SN':
|
387 |
+
self.which_conv = functools.partial(SNConv2d,
|
388 |
+
kernel_size=3, padding=1,
|
389 |
+
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
|
390 |
+
eps=self.SN_eps)
|
391 |
+
self.which_linear = functools.partial(SNLinear,
|
392 |
+
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
|
393 |
+
eps=self.SN_eps)
|
394 |
+
self.blocks = []
|
395 |
+
for index in range(len(self.arch['out_channels'])):
|
396 |
+
|
397 |
+
self.blocks += [[DBlock(in_channels=self.arch['in_channels'][index],
|
398 |
+
out_channels=self.arch['out_channels'][index],
|
399 |
+
which_conv=self.which_conv,
|
400 |
+
wide=self.G_wide,
|
401 |
+
activation=self.activation,
|
402 |
+
preactivation=(index > 0),
|
403 |
+
downsample=nn.AvgPool2d(2))]]
|
404 |
+
|
405 |
+
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
|
406 |
+
self.init_weights()
|
407 |
+
|
408 |
+
|
409 |
+
def init_weights(self):
|
410 |
+
self.param_count = 0
|
411 |
+
for module in self.modules():
|
412 |
+
if (isinstance(module, nn.Conv2d)
|
413 |
+
or isinstance(module, nn.Linear)
|
414 |
+
or isinstance(module, nn.Embedding)):
|
415 |
+
if self.init == 'ortho':
|
416 |
+
init.orthogonal_(module.weight)
|
417 |
+
elif self.init == 'N02':
|
418 |
+
init.normal_(module.weight, 0, 0.02)
|
419 |
+
elif self.init in ['glorot', 'xavier']:
|
420 |
+
init.xavier_uniform_(module.weight)
|
421 |
+
else:
|
422 |
+
print('Init style not recognized...')
|
423 |
+
self.param_count += sum([p.data.nelement() for p in module.parameters()])
|
424 |
+
print('Param count for D''s initialized parameters: %d' % self.param_count)
|
425 |
+
|
426 |
+
def forward(self,x):
|
427 |
+
h = x
|
428 |
+
residual_features = []
|
429 |
+
residual_features.append(h)
|
430 |
+
for index, blocklist in enumerate(self.blocks):
|
431 |
+
for block in blocklist:
|
432 |
+
h = block(h)
|
433 |
+
if index in self.save_featrues[:-1]:
|
434 |
+
residual_features.append(h)
|
435 |
+
return h,residual_features
|
src/modules/embeddings.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
def get_timestep_embedding(
|
8 |
+
timesteps: torch.Tensor,
|
9 |
+
embedding_dim: int,
|
10 |
+
flip_sin_to_cos: bool = False,
|
11 |
+
downscale_freq_shift: float = 1,
|
12 |
+
scale: float = 1,
|
13 |
+
max_period: int = 10000,
|
14 |
+
):
|
15 |
+
"""
|
16 |
+
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
|
17 |
+
|
18 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
19 |
+
These may be fractional.
|
20 |
+
:param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the
|
21 |
+
embeddings. :return: an [N x dim] Tensor of positional embeddings.
|
22 |
+
"""
|
23 |
+
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
|
24 |
+
|
25 |
+
half_dim = embedding_dim // 2
|
26 |
+
exponent = -math.log(max_period) * torch.arange(
|
27 |
+
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
|
28 |
+
)
|
29 |
+
exponent = exponent / (half_dim - downscale_freq_shift)
|
30 |
+
|
31 |
+
emb = torch.exp(exponent)
|
32 |
+
emb = timesteps[:, None].float() * emb[None, :]
|
33 |
+
|
34 |
+
# scale embeddings
|
35 |
+
emb = scale * emb
|
36 |
+
|
37 |
+
# concat sine and cosine embeddings
|
38 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
|
39 |
+
|
40 |
+
# flip sine and cosine embeddings
|
41 |
+
if flip_sin_to_cos:
|
42 |
+
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
|
43 |
+
|
44 |
+
# zero pad
|
45 |
+
if embedding_dim % 2 == 1:
|
46 |
+
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
47 |
+
return emb
|
48 |
+
|
49 |
+
|
50 |
+
class TimestepEmbedding(nn.Module):
|
51 |
+
def __init__(self, channel: int, time_embed_dim: int, act_fn: str = "silu"):
|
52 |
+
super().__init__()
|
53 |
+
|
54 |
+
self.linear_1 = nn.Linear(channel, time_embed_dim)
|
55 |
+
self.act = None
|
56 |
+
if act_fn == "silu":
|
57 |
+
self.act = nn.SiLU()
|
58 |
+
self.linear_2 = nn.Linear(time_embed_dim, time_embed_dim)
|
59 |
+
|
60 |
+
def forward(self, sample):
|
61 |
+
sample = self.linear_1(sample)
|
62 |
+
|
63 |
+
if self.act is not None:
|
64 |
+
sample = self.act(sample)
|
65 |
+
|
66 |
+
sample = self.linear_2(sample)
|
67 |
+
return sample
|
68 |
+
|
69 |
+
|
70 |
+
class Timesteps(nn.Module):
|
71 |
+
def __init__(self, num_channels: int, flip_sin_to_cos: bool, downscale_freq_shift: float):
|
72 |
+
super().__init__()
|
73 |
+
self.num_channels = num_channels
|
74 |
+
self.flip_sin_to_cos = flip_sin_to_cos
|
75 |
+
self.downscale_freq_shift = downscale_freq_shift
|
76 |
+
|
77 |
+
def forward(self, timesteps):
|
78 |
+
t_emb = get_timestep_embedding(
|
79 |
+
timesteps,
|
80 |
+
self.num_channels,
|
81 |
+
flip_sin_to_cos=self.flip_sin_to_cos,
|
82 |
+
downscale_freq_shift=self.downscale_freq_shift,
|
83 |
+
)
|
84 |
+
return t_emb
|
src/modules/resnet.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
|
8 |
+
def upfirdn2d_native(tensor, kernel, up=1, down=1, pad=(0, 0)):
|
9 |
+
up_x = up_y = up
|
10 |
+
down_x = down_y = down
|
11 |
+
pad_x0 = pad_y0 = pad[0]
|
12 |
+
pad_x1 = pad_y1 = pad[1]
|
13 |
+
|
14 |
+
_, channel, in_h, in_w = tensor.shape
|
15 |
+
tensor = tensor.reshape(-1, in_h, in_w, 1)
|
16 |
+
|
17 |
+
_, in_h, in_w, minor = tensor.shape
|
18 |
+
kernel_h, kernel_w = kernel.shape
|
19 |
+
|
20 |
+
out = tensor.view(-1, in_h, 1, in_w, 1, minor)
|
21 |
+
|
22 |
+
# Temporary workaround for mps specific issue: https://github.com/pytorch/pytorch/issues/84535
|
23 |
+
if tensor.device.type == "mps":
|
24 |
+
out = out.to("cpu")
|
25 |
+
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
|
26 |
+
out = out.view(-1, in_h * up_y, in_w * up_x, minor)
|
27 |
+
|
28 |
+
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
|
29 |
+
out = out.to(tensor.device) # Move back to mps if necessary
|
30 |
+
out = out[
|
31 |
+
:,
|
32 |
+
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
|
33 |
+
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
|
34 |
+
:,
|
35 |
+
]
|
36 |
+
|
37 |
+
out = out.permute(0, 3, 1, 2)
|
38 |
+
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
|
39 |
+
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
|
40 |
+
out = F.conv2d(out, w)
|
41 |
+
out = out.reshape(
|
42 |
+
-1,
|
43 |
+
minor,
|
44 |
+
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
|
45 |
+
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
|
46 |
+
)
|
47 |
+
out = out.permute(0, 2, 3, 1)
|
48 |
+
out = out[:, ::down_y, ::down_x, :]
|
49 |
+
|
50 |
+
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
|
51 |
+
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1
|
52 |
+
|
53 |
+
return out.view(-1, channel, out_h, out_w)
|
54 |
+
|
55 |
+
|
56 |
+
def upsample_2d(hidden_states, kernel=None, factor=2, gain=1):
|
57 |
+
r"""Upsample2D a batch of 2D images with the given filter.
|
58 |
+
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
|
59 |
+
filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
|
60 |
+
`gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is
|
61 |
+
a: multiple of the upsampling factor.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
65 |
+
kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
|
66 |
+
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
|
67 |
+
factor: Integer upsampling factor (default: 2).
|
68 |
+
gain: Scaling factor for signal magnitude (default: 1.0).
|
69 |
+
|
70 |
+
Returns:
|
71 |
+
output: Tensor of the shape `[N, C, H * factor, W * factor]`
|
72 |
+
"""
|
73 |
+
assert isinstance(factor, int) and factor >= 1
|
74 |
+
if kernel is None:
|
75 |
+
kernel = [1] * factor
|
76 |
+
|
77 |
+
kernel = torch.tensor(kernel, dtype=torch.float32)
|
78 |
+
if kernel.ndim == 1:
|
79 |
+
kernel = torch.outer(kernel, kernel)
|
80 |
+
kernel /= torch.sum(kernel)
|
81 |
+
|
82 |
+
kernel = kernel * (gain * (factor**2))
|
83 |
+
pad_value = kernel.shape[0] - factor
|
84 |
+
output = upfirdn2d_native(
|
85 |
+
hidden_states,
|
86 |
+
kernel.to(device=hidden_states.device),
|
87 |
+
up=factor,
|
88 |
+
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
|
89 |
+
)
|
90 |
+
return output
|
91 |
+
|
92 |
+
|
93 |
+
def downsample_2d(hidden_states, kernel=None, factor=2, gain=1):
|
94 |
+
r"""Downsample2D a batch of 2D images with the given filter.
|
95 |
+
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
|
96 |
+
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
|
97 |
+
specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
|
98 |
+
shape is a multiple of the downsampling factor.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
|
102 |
+
kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
|
103 |
+
(separable). The default is `[1] * factor`, which corresponds to average pooling.
|
104 |
+
factor: Integer downsampling factor (default: 2).
|
105 |
+
gain: Scaling factor for signal magnitude (default: 1.0).
|
106 |
+
|
107 |
+
Returns:
|
108 |
+
output: Tensor of the shape `[N, C, H // factor, W // factor]`
|
109 |
+
"""
|
110 |
+
|
111 |
+
assert isinstance(factor, int) and factor >= 1
|
112 |
+
if kernel is None:
|
113 |
+
kernel = [1] * factor
|
114 |
+
|
115 |
+
kernel = torch.tensor(kernel, dtype=torch.float32)
|
116 |
+
if kernel.ndim == 1:
|
117 |
+
kernel = torch.outer(kernel, kernel)
|
118 |
+
kernel /= torch.sum(kernel)
|
119 |
+
|
120 |
+
kernel = kernel * gain
|
121 |
+
pad_value = kernel.shape[0] - factor
|
122 |
+
output = upfirdn2d_native(
|
123 |
+
hidden_states, kernel.to(device=hidden_states.device), down=factor, pad=((pad_value + 1) // 2, pad_value // 2)
|
124 |
+
)
|
125 |
+
return output
|
126 |
+
|
127 |
+
|
128 |
+
class Mish(torch.nn.Module):
|
129 |
+
def forward(self, hidden_states):
|
130 |
+
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
131 |
+
|
132 |
+
|
133 |
+
class Downsample2D(nn.Module):
|
134 |
+
"""
|
135 |
+
A downsampling layer with an optional convolution.
|
136 |
+
|
137 |
+
Parameters:
|
138 |
+
channels: channels in the inputs and outputs.
|
139 |
+
use_conv: a bool determining if a convolution is applied.
|
140 |
+
dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions.
|
141 |
+
"""
|
142 |
+
|
143 |
+
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
|
144 |
+
super().__init__()
|
145 |
+
self.channels = channels
|
146 |
+
self.out_channels = out_channels or channels
|
147 |
+
self.use_conv = use_conv
|
148 |
+
self.padding = padding
|
149 |
+
stride = 2
|
150 |
+
self.name = name
|
151 |
+
|
152 |
+
if use_conv:
|
153 |
+
conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
154 |
+
else:
|
155 |
+
assert self.channels == self.out_channels
|
156 |
+
conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
|
157 |
+
|
158 |
+
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
159 |
+
if name == "conv":
|
160 |
+
self.Conv2d_0 = conv
|
161 |
+
self.conv = conv
|
162 |
+
elif name == "Conv2d_0":
|
163 |
+
self.conv = conv
|
164 |
+
else:
|
165 |
+
self.conv = conv
|
166 |
+
|
167 |
+
def forward(self, hidden_states):
|
168 |
+
assert hidden_states.shape[1] == self.channels
|
169 |
+
if self.use_conv and self.padding == 0:
|
170 |
+
pad = (0, 1, 0, 1)
|
171 |
+
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
|
172 |
+
|
173 |
+
assert hidden_states.shape[1] == self.channels
|
174 |
+
hidden_states = self.conv(hidden_states)
|
175 |
+
|
176 |
+
return hidden_states
|
177 |
+
|
178 |
+
|
179 |
+
class ResnetBlock2D(nn.Module):
|
180 |
+
def __init__(
|
181 |
+
self,
|
182 |
+
*,
|
183 |
+
in_channels,
|
184 |
+
out_channels=None,
|
185 |
+
conv_shortcut=False,
|
186 |
+
dropout=0.0,
|
187 |
+
temb_channels=512,
|
188 |
+
groups=32,
|
189 |
+
groups_out=None,
|
190 |
+
pre_norm=True,
|
191 |
+
eps=1e-6,
|
192 |
+
non_linearity="swish",
|
193 |
+
time_embedding_norm="default",
|
194 |
+
kernel=None,
|
195 |
+
output_scale_factor=1.0,
|
196 |
+
use_in_shortcut=None,
|
197 |
+
up=False,
|
198 |
+
down=False,
|
199 |
+
):
|
200 |
+
super().__init__()
|
201 |
+
self.pre_norm = pre_norm
|
202 |
+
self.pre_norm = True
|
203 |
+
self.in_channels = in_channels
|
204 |
+
out_channels = in_channels if out_channels is None else out_channels
|
205 |
+
self.out_channels = out_channels
|
206 |
+
self.use_conv_shortcut = conv_shortcut
|
207 |
+
self.time_embedding_norm = time_embedding_norm
|
208 |
+
self.up = up
|
209 |
+
self.down = down
|
210 |
+
self.output_scale_factor = output_scale_factor
|
211 |
+
|
212 |
+
if groups_out is None:
|
213 |
+
groups_out = groups
|
214 |
+
|
215 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
216 |
+
|
217 |
+
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
218 |
+
|
219 |
+
if temb_channels is not None:
|
220 |
+
self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels)
|
221 |
+
else:
|
222 |
+
self.time_emb_proj = None
|
223 |
+
|
224 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
225 |
+
self.dropout = torch.nn.Dropout(dropout)
|
226 |
+
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
227 |
+
|
228 |
+
if non_linearity == "swish":
|
229 |
+
self.nonlinearity = lambda x: F.silu(x)
|
230 |
+
elif non_linearity == "mish":
|
231 |
+
self.nonlinearity = Mish()
|
232 |
+
elif non_linearity == "silu":
|
233 |
+
self.nonlinearity = nn.SiLU()
|
234 |
+
|
235 |
+
self.upsample = self.downsample = None
|
236 |
+
if self.up:
|
237 |
+
if kernel == "fir":
|
238 |
+
fir_kernel = (1, 3, 3, 1)
|
239 |
+
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel)
|
240 |
+
elif kernel == "sde_vp":
|
241 |
+
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
|
242 |
+
else:
|
243 |
+
self.upsample = Upsample2D(in_channels, use_conv=False)
|
244 |
+
elif self.down:
|
245 |
+
if kernel == "fir":
|
246 |
+
fir_kernel = (1, 3, 3, 1)
|
247 |
+
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel)
|
248 |
+
elif kernel == "sde_vp":
|
249 |
+
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
|
250 |
+
else:
|
251 |
+
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")
|
252 |
+
|
253 |
+
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
|
254 |
+
|
255 |
+
self.conv_shortcut = None
|
256 |
+
if self.use_in_shortcut:
|
257 |
+
self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
258 |
+
|
259 |
+
def forward(self, input_tensor, temb):
|
260 |
+
hidden_states = input_tensor
|
261 |
+
|
262 |
+
hidden_states = self.norm1(hidden_states) # hidden_states: torch.Size([1, 128, 64, 64])
|
263 |
+
hidden_states = self.nonlinearity(hidden_states)
|
264 |
+
|
265 |
+
if self.upsample is not None: # when crossattn, both upsample and downsample is None
|
266 |
+
input_tensor = self.upsample(input_tensor)
|
267 |
+
hidden_states = self.upsample(hidden_states)
|
268 |
+
elif self.downsample is not None:
|
269 |
+
input_tensor = self.downsample(input_tensor)
|
270 |
+
hidden_states = self.downsample(hidden_states)
|
271 |
+
|
272 |
+
hidden_states = self.conv1(hidden_states)
|
273 |
+
|
274 |
+
if temb is not None:
|
275 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None]
|
276 |
+
hidden_states = hidden_states + temb # just add together
|
277 |
+
|
278 |
+
hidden_states = self.norm2(hidden_states)
|
279 |
+
hidden_states = self.nonlinearity(hidden_states)
|
280 |
+
|
281 |
+
hidden_states = self.dropout(hidden_states)
|
282 |
+
hidden_states = self.conv2(hidden_states)
|
283 |
+
|
284 |
+
if self.conv_shortcut is not None:
|
285 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
286 |
+
|
287 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
288 |
+
|
289 |
+
return output_tensor
|
290 |
+
|
291 |
+
|
292 |
+
class Upsample2D(nn.Module):
|
293 |
+
"""
|
294 |
+
An upsampling layer with an optional convolution.
|
295 |
+
|
296 |
+
Parameters:
|
297 |
+
channels: channels in the inputs and outputs.
|
298 |
+
use_conv: a bool determining if a convolution is applied.
|
299 |
+
dims: determines if the signal is 1D, 2D, or 3D. If 3D, then upsampling occurs in the inner-two dimensions.
|
300 |
+
"""
|
301 |
+
|
302 |
+
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
|
303 |
+
super().__init__()
|
304 |
+
self.channels = channels
|
305 |
+
self.out_channels = out_channels or channels
|
306 |
+
self.use_conv = use_conv
|
307 |
+
self.use_conv_transpose = use_conv_transpose
|
308 |
+
self.name = name
|
309 |
+
|
310 |
+
conv = None
|
311 |
+
if use_conv_transpose:
|
312 |
+
conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
|
313 |
+
elif use_conv:
|
314 |
+
conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
|
315 |
+
|
316 |
+
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
317 |
+
if name == "conv":
|
318 |
+
self.conv = conv
|
319 |
+
else:
|
320 |
+
self.Conv2d_0 = conv
|
321 |
+
|
322 |
+
def forward(self, hidden_states, output_size=None):
|
323 |
+
assert hidden_states.shape[1] == self.channels
|
324 |
+
|
325 |
+
if self.use_conv_transpose:
|
326 |
+
return self.conv(hidden_states)
|
327 |
+
|
328 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
329 |
+
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
|
330 |
+
# https://github.com/pytorch/pytorch/issues/86679
|
331 |
+
dtype = hidden_states.dtype
|
332 |
+
if dtype == torch.bfloat16:
|
333 |
+
hidden_states = hidden_states.to(torch.float32)
|
334 |
+
|
335 |
+
# if `output_size` is passed we force the interpolation output
|
336 |
+
# size and do not make use of `scale_factor=2`
|
337 |
+
if output_size is None:
|
338 |
+
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
|
339 |
+
else:
|
340 |
+
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
341 |
+
|
342 |
+
# If the input is bfloat16, we cast back to bfloat16
|
343 |
+
if dtype == torch.bfloat16:
|
344 |
+
hidden_states = hidden_states.to(dtype)
|
345 |
+
|
346 |
+
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
|
347 |
+
if self.use_conv:
|
348 |
+
if self.name == "conv":
|
349 |
+
hidden_states = self.conv(hidden_states)
|
350 |
+
else:
|
351 |
+
hidden_states = self.Conv2d_0(hidden_states)
|
352 |
+
|
353 |
+
return hidden_states
|
src/modules/style_encoder.py
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch.nn import init
|
7 |
+
|
8 |
+
from diffusers import ModelMixin
|
9 |
+
from diffusers.configuration_utils import (ConfigMixin,
|
10 |
+
register_to_config)
|
11 |
+
|
12 |
+
|
13 |
+
def proj(x, y):
|
14 |
+
return torch.mm(y, x.t()) * y / torch.mm(y, y.t())
|
15 |
+
|
16 |
+
|
17 |
+
def gram_schmidt(x, ys):
|
18 |
+
for y in ys:
|
19 |
+
x = x - proj(x, y)
|
20 |
+
return x
|
21 |
+
|
22 |
+
|
23 |
+
def power_iteration(W, u_, update=True, eps=1e-12):
|
24 |
+
us, vs, svs = [], [], []
|
25 |
+
for i, u in enumerate(u_):
|
26 |
+
with torch.no_grad():
|
27 |
+
v = torch.matmul(u, W)
|
28 |
+
v = F.normalize(gram_schmidt(v, vs), eps=eps)
|
29 |
+
vs += [v]
|
30 |
+
u = torch.matmul(v, W.t())
|
31 |
+
u = F.normalize(gram_schmidt(u, us), eps=eps)
|
32 |
+
us += [u]
|
33 |
+
if update:
|
34 |
+
u_[i][:] = u
|
35 |
+
svs += [torch.squeeze(torch.matmul(torch.matmul(v, W.t()), u.t()))]
|
36 |
+
return svs, us, vs
|
37 |
+
|
38 |
+
|
39 |
+
class LinearBlock(nn.Module):
|
40 |
+
def __init__(
|
41 |
+
self,
|
42 |
+
in_dim,
|
43 |
+
out_dim,
|
44 |
+
norm='none',
|
45 |
+
act='relu',
|
46 |
+
use_sn=False
|
47 |
+
):
|
48 |
+
super(LinearBlock, self).__init__()
|
49 |
+
use_bias = True
|
50 |
+
self.fc = nn.Linear(in_dim, out_dim, bias=use_bias)
|
51 |
+
if use_sn:
|
52 |
+
self.fc = nn.utils.spectral_norm(self.fc)
|
53 |
+
|
54 |
+
# initialize normalization
|
55 |
+
norm_dim = out_dim
|
56 |
+
if norm == 'bn':
|
57 |
+
self.norm = nn.BatchNorm1d(norm_dim)
|
58 |
+
elif norm == 'in':
|
59 |
+
self.norm = nn.InstanceNorm1d(norm_dim)
|
60 |
+
elif norm == 'none':
|
61 |
+
self.norm = None
|
62 |
+
else:
|
63 |
+
assert 0, "Unsupported normalization: {}".format(norm)
|
64 |
+
|
65 |
+
# initialize activation
|
66 |
+
if act == 'relu':
|
67 |
+
self.activation = nn.ReLU(inplace=True)
|
68 |
+
elif act == 'lrelu':
|
69 |
+
self.activation = nn.LeakyReLU(0.2, inplace=True)
|
70 |
+
elif act == 'tanh':
|
71 |
+
self.activation = nn.Tanh()
|
72 |
+
elif act == 'none':
|
73 |
+
self.activation = None
|
74 |
+
else:
|
75 |
+
assert 0, "Unsupported activation: {}".format(act)
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
out = self.fc(x)
|
79 |
+
if self.norm:
|
80 |
+
out = self.norm(out)
|
81 |
+
if self.activation:
|
82 |
+
out = self.activation(out)
|
83 |
+
return out
|
84 |
+
|
85 |
+
|
86 |
+
class MLP(nn.Module):
|
87 |
+
def __init__(
|
88 |
+
self,
|
89 |
+
nf_in,
|
90 |
+
nf_out,
|
91 |
+
nf_mlp,
|
92 |
+
num_blocks,
|
93 |
+
norm,
|
94 |
+
act,
|
95 |
+
use_sn =False
|
96 |
+
):
|
97 |
+
super(MLP,self).__init__()
|
98 |
+
self.model = nn.ModuleList()
|
99 |
+
nf = nf_mlp
|
100 |
+
self.model.append(LinearBlock(nf_in, nf, norm = norm, act = act, use_sn = use_sn))
|
101 |
+
for _ in range((num_blocks - 2)):
|
102 |
+
self.model.append(LinearBlock(nf, nf, norm=norm, act=act, use_sn=use_sn))
|
103 |
+
self.model.append(LinearBlock(nf, nf_out, norm='none', act ='none', use_sn = use_sn))
|
104 |
+
self.model = nn.Sequential(*self.model)
|
105 |
+
|
106 |
+
def forward(self, x):
|
107 |
+
return self.model(x.view(x.size(0), -1))
|
108 |
+
|
109 |
+
|
110 |
+
class SN(object):
|
111 |
+
def __init__(self, num_svs, num_itrs, num_outputs, transpose=False, eps=1e-12):
|
112 |
+
self.num_itrs = num_itrs
|
113 |
+
self.num_svs = num_svs
|
114 |
+
self.transpose = transpose
|
115 |
+
self.eps = eps
|
116 |
+
for i in range(self.num_svs):
|
117 |
+
self.register_buffer('u%d' % i, torch.randn(1, num_outputs))
|
118 |
+
self.register_buffer('sv%d' % i, torch.ones(1))
|
119 |
+
|
120 |
+
@property
|
121 |
+
def u(self):
|
122 |
+
return [getattr(self, 'u%d' % i) for i in range(self.num_svs)]
|
123 |
+
|
124 |
+
@property
|
125 |
+
def sv(self):
|
126 |
+
return [getattr(self, 'sv%d' % i) for i in range(self.num_svs)]
|
127 |
+
|
128 |
+
def W_(self):
|
129 |
+
W_mat = self.weight.view(self.weight.size(0), -1)
|
130 |
+
if self.transpose:
|
131 |
+
W_mat = W_mat.t()
|
132 |
+
for _ in range(self.num_itrs):
|
133 |
+
svs, us, vs = power_iteration(W_mat, self.u, update=self.training, eps=self.eps)
|
134 |
+
if self.training:
|
135 |
+
with torch.no_grad():
|
136 |
+
for i, sv in enumerate(svs):
|
137 |
+
self.sv[i][:] = sv
|
138 |
+
return self.weight / svs[0]
|
139 |
+
|
140 |
+
|
141 |
+
class SNConv2d(nn.Conv2d, SN):
|
142 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
143 |
+
padding=0, dilation=1, groups=1, bias=True,
|
144 |
+
num_svs=1, num_itrs=1, eps=1e-12):
|
145 |
+
nn.Conv2d.__init__(self, in_channels, out_channels, kernel_size, stride,
|
146 |
+
padding, dilation, groups, bias)
|
147 |
+
SN.__init__(self, num_svs, num_itrs, out_channels, eps=eps)
|
148 |
+
|
149 |
+
def forward(self, x):
|
150 |
+
return F.conv2d(x, self.W_(), self.bias, self.stride,
|
151 |
+
self.padding, self.dilation, self.groups)
|
152 |
+
|
153 |
+
def forward_wo_sn(self, x):
|
154 |
+
return F.conv2d(x, self.weight, self.bias, self.stride,
|
155 |
+
self.padding, self.dilation, self.groups)
|
156 |
+
|
157 |
+
|
158 |
+
class SNLinear(nn.Linear, SN):
|
159 |
+
def __init__(self, in_features, out_features, bias=True,
|
160 |
+
num_svs=1, num_itrs=1, eps=1e-12):
|
161 |
+
nn.Linear.__init__(self, in_features, out_features, bias)
|
162 |
+
SN.__init__(self, num_svs, num_itrs, out_features, eps=eps)
|
163 |
+
|
164 |
+
def forward(self, x):
|
165 |
+
return F.linear(x, self.W_(), self.bias)
|
166 |
+
|
167 |
+
|
168 |
+
class DBlock(nn.Module):
|
169 |
+
def __init__(self, in_channels, out_channels, which_conv=SNConv2d, wide=True,
|
170 |
+
preactivation=False, activation=None, downsample=None,):
|
171 |
+
super(DBlock, self).__init__()
|
172 |
+
|
173 |
+
self.in_channels, self.out_channels = in_channels, out_channels
|
174 |
+
|
175 |
+
self.hidden_channels = self.out_channels if wide else self.in_channels
|
176 |
+
self.which_conv = which_conv
|
177 |
+
self.preactivation = preactivation
|
178 |
+
self.activation = activation
|
179 |
+
self.downsample = downsample
|
180 |
+
|
181 |
+
# Conv layers
|
182 |
+
self.conv1 = self.which_conv(self.in_channels, self.hidden_channels)
|
183 |
+
self.conv2 = self.which_conv(self.hidden_channels, self.out_channels)
|
184 |
+
self.learnable_sc = True if (in_channels != out_channels) or downsample else False
|
185 |
+
if self.learnable_sc:
|
186 |
+
self.conv_sc = self.which_conv(in_channels, out_channels,
|
187 |
+
kernel_size=1, padding=0)
|
188 |
+
def shortcut(self, x):
|
189 |
+
if self.preactivation:
|
190 |
+
if self.learnable_sc:
|
191 |
+
x = self.conv_sc(x)
|
192 |
+
if self.downsample:
|
193 |
+
x = self.downsample(x)
|
194 |
+
else:
|
195 |
+
if self.downsample:
|
196 |
+
x = self.downsample(x)
|
197 |
+
if self.learnable_sc:
|
198 |
+
x = self.conv_sc(x)
|
199 |
+
return x
|
200 |
+
|
201 |
+
def forward(self, x):
|
202 |
+
|
203 |
+
if self.preactivation:
|
204 |
+
h = F.relu(x)
|
205 |
+
else:
|
206 |
+
h = x
|
207 |
+
h = self.conv1(h)
|
208 |
+
h = self.conv2(self.activation(h))
|
209 |
+
if self.downsample:
|
210 |
+
h = self.downsample(h)
|
211 |
+
|
212 |
+
return h + self.shortcut(x)
|
213 |
+
|
214 |
+
|
215 |
+
class GBlock(nn.Module):
|
216 |
+
def __init__(self, in_channels, out_channels,
|
217 |
+
which_conv=nn.Conv2d,which_bn= nn.BatchNorm2d, activation=None,
|
218 |
+
upsample=None):
|
219 |
+
super(GBlock, self).__init__()
|
220 |
+
|
221 |
+
self.in_channels, self.out_channels = in_channels, out_channels
|
222 |
+
self.which_conv,self.which_bn =which_conv, which_bn
|
223 |
+
self.activation = activation
|
224 |
+
self.upsample = upsample
|
225 |
+
# Conv layers
|
226 |
+
self.conv1 = self.which_conv(self.in_channels, self.out_channels)
|
227 |
+
self.conv2 = self.which_conv(self.out_channels, self.out_channels)
|
228 |
+
self.learnable_sc = in_channels != out_channels or upsample
|
229 |
+
if self.learnable_sc:
|
230 |
+
self.conv_sc = self.which_conv(in_channels, out_channels,
|
231 |
+
kernel_size=1, padding=0)
|
232 |
+
# Batchnorm layers
|
233 |
+
self.bn1 = self.which_bn(in_channels)
|
234 |
+
self.bn2 = self.which_bn(out_channels)
|
235 |
+
# upsample layers
|
236 |
+
self.upsample = upsample
|
237 |
+
|
238 |
+
|
239 |
+
def forward(self, x):
|
240 |
+
h = self.activation(self.bn1(x))
|
241 |
+
if self.upsample:
|
242 |
+
h = self.upsample(h)
|
243 |
+
x = self.upsample(x)
|
244 |
+
h = self.conv1(h)
|
245 |
+
h = self.activation(self.bn2(h))
|
246 |
+
h = self.conv2(h)
|
247 |
+
if self.learnable_sc:
|
248 |
+
x = self.conv_sc(x)
|
249 |
+
return h + x
|
250 |
+
|
251 |
+
|
252 |
+
class GBlock2(nn.Module):
|
253 |
+
def __init__(self, in_channels, out_channels,
|
254 |
+
which_conv=nn.Conv2d, activation=None,
|
255 |
+
upsample=None, skip_connection = True):
|
256 |
+
super(GBlock2, self).__init__()
|
257 |
+
|
258 |
+
self.in_channels, self.out_channels = in_channels, out_channels
|
259 |
+
self.which_conv = which_conv
|
260 |
+
self.activation = activation
|
261 |
+
self.upsample = upsample
|
262 |
+
|
263 |
+
# Conv layers
|
264 |
+
self.conv1 = self.which_conv(self.in_channels, self.out_channels)
|
265 |
+
self.conv2 = self.which_conv(self.out_channels, self.out_channels)
|
266 |
+
self.learnable_sc = in_channels != out_channels or upsample
|
267 |
+
if self.learnable_sc:
|
268 |
+
self.conv_sc = self.which_conv(in_channels, out_channels,
|
269 |
+
kernel_size=1, padding=0)
|
270 |
+
# upsample layers
|
271 |
+
self.upsample = upsample
|
272 |
+
self.skip_connection = skip_connection
|
273 |
+
|
274 |
+
def forward(self, x):
|
275 |
+
h = self.activation(x)
|
276 |
+
if self.upsample:
|
277 |
+
h = self.upsample(h)
|
278 |
+
x = self.upsample(x)
|
279 |
+
h = self.conv1(h)
|
280 |
+
|
281 |
+
h = self.activation(h)
|
282 |
+
h = self.conv2(h)
|
283 |
+
|
284 |
+
if self.learnable_sc:
|
285 |
+
x = self.conv_sc(x)
|
286 |
+
if self.skip_connection:
|
287 |
+
out = h + x
|
288 |
+
else:
|
289 |
+
out = h
|
290 |
+
return out
|
291 |
+
|
292 |
+
|
293 |
+
def style_encoder_textedit_addskip_arch(ch =64,out_channel_multiplier = 1, input_nc = 3):
|
294 |
+
arch = {}
|
295 |
+
n=2
|
296 |
+
arch[96] = {'in_channels': [input_nc] + [ch*item for item in [1,2,4,8]],
|
297 |
+
'out_channels' : [item * ch for item in [1,2,4,8,16]],
|
298 |
+
'resolution': [48,24,12,6,3]}
|
299 |
+
|
300 |
+
arch[128] = {'in_channels': [input_nc] + [ch*item for item in [1,2,4,8]],
|
301 |
+
'out_channels' : [item * ch for item in [1,2,4,8,16]],
|
302 |
+
'resolution': [64,32,16,8,4]}
|
303 |
+
|
304 |
+
arch[256] = {'in_channels':[input_nc]+[ch*item for item in [1,2,4,8,8]],
|
305 |
+
'out_channels':[item*ch for item in [1,2,4,8,8,16]],
|
306 |
+
'resolution': [128,64,32,16,8,4]}
|
307 |
+
return arch
|
308 |
+
|
309 |
+
|
310 |
+
class StyleEncoder(ModelMixin, ConfigMixin):
|
311 |
+
"""
|
312 |
+
This class is to encode the style image to image embedding.
|
313 |
+
Downsample scale is 32.
|
314 |
+
For example:
|
315 |
+
Input: Shape[Batch, 3, 128, 128]
|
316 |
+
Output: Shape[Batch, 255, 4, 4]
|
317 |
+
"""
|
318 |
+
@register_to_config
|
319 |
+
def __init__(
|
320 |
+
self,
|
321 |
+
G_ch=64,
|
322 |
+
G_wide=True,
|
323 |
+
resolution=128,
|
324 |
+
G_kernel_size=3,
|
325 |
+
G_attn='64_32_16_8',
|
326 |
+
n_classes=1000,
|
327 |
+
num_G_SVs=1,
|
328 |
+
num_G_SV_itrs=1,
|
329 |
+
G_activation=nn.ReLU(inplace=False),
|
330 |
+
SN_eps=1e-12,
|
331 |
+
output_dim=1,
|
332 |
+
G_fp16=False,
|
333 |
+
G_init='N02',
|
334 |
+
G_param='SN',
|
335 |
+
nf_mlp = 512,
|
336 |
+
nEmbedding = 256,
|
337 |
+
input_nc = 3,
|
338 |
+
output_nc = 3
|
339 |
+
):
|
340 |
+
super(StyleEncoder, self).__init__()
|
341 |
+
|
342 |
+
self.ch = G_ch
|
343 |
+
self.G_wide = G_wide
|
344 |
+
self.resolution = resolution
|
345 |
+
self.kernel_size = G_kernel_size
|
346 |
+
self.attention = G_attn
|
347 |
+
self.n_classes = n_classes
|
348 |
+
self.activation = G_activation
|
349 |
+
self.init = G_init
|
350 |
+
self.G_param = G_param
|
351 |
+
self.SN_eps = SN_eps
|
352 |
+
self.fp16 = G_fp16
|
353 |
+
|
354 |
+
if self.resolution == 96:
|
355 |
+
self.save_featrues = [0,1,2,3,4]
|
356 |
+
if self.resolution == 128:
|
357 |
+
self.save_featrues = [0,1,2,3,4]
|
358 |
+
elif self.resolution == 256:
|
359 |
+
self.save_featrues = [0,1,2,3,4,5]
|
360 |
+
|
361 |
+
self.out_channel_nultipiler = 1
|
362 |
+
self.arch = style_encoder_textedit_addskip_arch(
|
363 |
+
self.ch,
|
364 |
+
self.out_channel_nultipiler,
|
365 |
+
input_nc
|
366 |
+
)[resolution]
|
367 |
+
|
368 |
+
if self.G_param == 'SN':
|
369 |
+
self.which_conv = functools.partial(
|
370 |
+
SNConv2d,
|
371 |
+
kernel_size=3, padding=1,
|
372 |
+
num_svs=num_G_SVs,
|
373 |
+
num_itrs=num_G_SV_itrs,
|
374 |
+
eps=self.SN_eps
|
375 |
+
)
|
376 |
+
self.which_linear = functools.partial(
|
377 |
+
SNLinear,
|
378 |
+
num_svs=num_G_SVs,
|
379 |
+
num_itrs=num_G_SV_itrs,
|
380 |
+
eps=self.SN_eps
|
381 |
+
)
|
382 |
+
self.blocks = []
|
383 |
+
for index in range(len(self.arch['out_channels'])):
|
384 |
+
|
385 |
+
self.blocks += [[DBlock(
|
386 |
+
in_channels=self.arch['in_channels'][index],
|
387 |
+
out_channels=self.arch['out_channels'][index],
|
388 |
+
which_conv=self.which_conv,
|
389 |
+
wide=self.G_wide,
|
390 |
+
activation=self.activation,
|
391 |
+
preactivation=(index > 0),
|
392 |
+
downsample=nn.AvgPool2d(2)
|
393 |
+
)]]
|
394 |
+
|
395 |
+
self.blocks = nn.ModuleList([
|
396 |
+
nn.ModuleList(block) for block in self.blocks
|
397 |
+
])
|
398 |
+
last_layer = nn.Sequential(
|
399 |
+
nn.InstanceNorm2d(self.arch['out_channels'][-1]),
|
400 |
+
self.activation,
|
401 |
+
nn.Conv2d(
|
402 |
+
self.arch['out_channels'][-1],
|
403 |
+
self.arch['out_channels'][-1],
|
404 |
+
kernel_size=1,
|
405 |
+
stride=1
|
406 |
+
)
|
407 |
+
)
|
408 |
+
self.blocks.append(last_layer)
|
409 |
+
self.init_weights()
|
410 |
+
|
411 |
+
def init_weights(self):
|
412 |
+
self.param_count = 0
|
413 |
+
for module in self.modules():
|
414 |
+
if (isinstance(module, nn.Conv2d)
|
415 |
+
or isinstance(module, nn.Linear)
|
416 |
+
or isinstance(module, nn.Embedding)):
|
417 |
+
if self.init == 'ortho':
|
418 |
+
init.orthogonal_(module.weight)
|
419 |
+
elif self.init == 'N02':
|
420 |
+
init.normal_(module.weight, 0, 0.02)
|
421 |
+
elif self.init in ['glorot', 'xavier']:
|
422 |
+
init.xavier_uniform_(module.weight)
|
423 |
+
else:
|
424 |
+
print('Init style not recognized...')
|
425 |
+
self.param_count += sum([p.data.nelement() for p in module.parameters()])
|
426 |
+
print('Param count for D''s initialized parameters: %d' % self.param_count)
|
427 |
+
|
428 |
+
def forward(self,x):
|
429 |
+
h = x
|
430 |
+
residual_features = []
|
431 |
+
residual_features.append(h)
|
432 |
+
for index, blocklist in enumerate(self.blocks):
|
433 |
+
for block in blocklist:
|
434 |
+
h = block(h)
|
435 |
+
if index in self.save_featrues[:-1]:
|
436 |
+
residual_features.append(h)
|
437 |
+
h = self.blocks[-1](h)
|
438 |
+
style_emd = h
|
439 |
+
h = F.adaptive_avg_pool2d(h,(1,1))
|
440 |
+
h = h.view(h.size(0),-1)
|
441 |
+
|
442 |
+
return style_emd,h,residual_features
|
src/modules/unet.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.utils.checkpoint
|
7 |
+
|
8 |
+
from diffusers import ModelMixin
|
9 |
+
from diffusers.configuration_utils import (ConfigMixin,
|
10 |
+
register_to_config)
|
11 |
+
from diffusers.utils import BaseOutput, logging
|
12 |
+
|
13 |
+
from .embeddings import TimestepEmbedding, Timesteps
|
14 |
+
from .unet_blocks import (DownBlock2D,
|
15 |
+
UNetMidMCABlock2D,
|
16 |
+
UpBlock2D,
|
17 |
+
get_down_block,
|
18 |
+
get_up_block)
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class UNetOutput(BaseOutput):
|
26 |
+
sample: torch.FloatTensor
|
27 |
+
|
28 |
+
|
29 |
+
class UNet(ModelMixin, ConfigMixin):
|
30 |
+
_supports_gradient_checkpointing = True
|
31 |
+
|
32 |
+
@register_to_config
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
sample_size: Optional[int] = None,
|
36 |
+
in_channels: int = 4,
|
37 |
+
out_channels: int = 4,
|
38 |
+
flip_sin_to_cos: bool = True,
|
39 |
+
freq_shift: int = 0,
|
40 |
+
down_block_types: Tuple[str] = None,
|
41 |
+
up_block_types: Tuple[str] = None,
|
42 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
43 |
+
layers_per_block: int = 1,
|
44 |
+
downsample_padding: int = 1,
|
45 |
+
mid_block_scale_factor: float = 1,
|
46 |
+
act_fn: str = "silu",
|
47 |
+
norm_num_groups: int = 32,
|
48 |
+
norm_eps: float = 1e-5,
|
49 |
+
cross_attention_dim: int = 1280,
|
50 |
+
attention_head_dim: int = 8,
|
51 |
+
channel_attn: bool = False,
|
52 |
+
content_encoder_downsample_size: int = 4,
|
53 |
+
content_start_channel: int = 16,
|
54 |
+
reduction: int = 32,
|
55 |
+
):
|
56 |
+
super().__init__()
|
57 |
+
|
58 |
+
self.content_encoder_downsample_size = content_encoder_downsample_size
|
59 |
+
|
60 |
+
self.sample_size = sample_size
|
61 |
+
time_embed_dim = block_out_channels[0] * 4
|
62 |
+
|
63 |
+
# input
|
64 |
+
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
65 |
+
|
66 |
+
# time
|
67 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
68 |
+
timestep_input_dim = block_out_channels[0]
|
69 |
+
|
70 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
71 |
+
|
72 |
+
self.down_blocks = nn.ModuleList([])
|
73 |
+
self.mid_block = None
|
74 |
+
self.up_blocks = nn.ModuleList([])
|
75 |
+
|
76 |
+
# down
|
77 |
+
output_channel = block_out_channels[0]
|
78 |
+
for i, down_block_type in enumerate(down_block_types):
|
79 |
+
input_channel = output_channel
|
80 |
+
output_channel = block_out_channels[i]
|
81 |
+
is_final_block = i == len(block_out_channels) - 1
|
82 |
+
|
83 |
+
if i != 0:
|
84 |
+
content_channel = content_start_channel * (2 ** (i-1))
|
85 |
+
else:
|
86 |
+
content_channel = 0
|
87 |
+
|
88 |
+
print("Load the down block ", down_block_type)
|
89 |
+
down_block = get_down_block(
|
90 |
+
down_block_type,
|
91 |
+
num_layers=layers_per_block,
|
92 |
+
in_channels=input_channel,
|
93 |
+
out_channels=output_channel,
|
94 |
+
temb_channels=time_embed_dim,
|
95 |
+
add_downsample=not is_final_block,
|
96 |
+
resnet_eps=norm_eps,
|
97 |
+
resnet_act_fn=act_fn,
|
98 |
+
resnet_groups=norm_num_groups,
|
99 |
+
cross_attention_dim=cross_attention_dim,
|
100 |
+
attn_num_head_channels=attention_head_dim,
|
101 |
+
downsample_padding=downsample_padding,
|
102 |
+
content_channel=content_channel,
|
103 |
+
reduction=reduction,
|
104 |
+
channel_attn=channel_attn,
|
105 |
+
)
|
106 |
+
self.down_blocks.append(down_block)
|
107 |
+
|
108 |
+
# mid
|
109 |
+
self.mid_block = UNetMidMCABlock2D(
|
110 |
+
in_channels=block_out_channels[-1],
|
111 |
+
temb_channels=time_embed_dim,
|
112 |
+
channel_attn=channel_attn,
|
113 |
+
resnet_eps=norm_eps,
|
114 |
+
resnet_act_fn=act_fn,
|
115 |
+
output_scale_factor=mid_block_scale_factor,
|
116 |
+
resnet_time_scale_shift="default",
|
117 |
+
cross_attention_dim=cross_attention_dim,
|
118 |
+
attn_num_head_channels=attention_head_dim,
|
119 |
+
resnet_groups=norm_num_groups,
|
120 |
+
content_channel=content_start_channel*(2**(content_encoder_downsample_size - 1)),
|
121 |
+
reduction=reduction,
|
122 |
+
)
|
123 |
+
|
124 |
+
# count how many layers upsample the images
|
125 |
+
self.num_upsamplers = 0
|
126 |
+
|
127 |
+
# up
|
128 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
129 |
+
output_channel = reversed_block_out_channels[0]
|
130 |
+
for i, up_block_type in enumerate(up_block_types):
|
131 |
+
is_final_block = i == len(block_out_channels) - 1
|
132 |
+
|
133 |
+
prev_output_channel = output_channel
|
134 |
+
output_channel = reversed_block_out_channels[i]
|
135 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
136 |
+
|
137 |
+
# add upsample block for all BUT final layer
|
138 |
+
if not is_final_block:
|
139 |
+
add_upsample = True
|
140 |
+
self.num_upsamplers += 1
|
141 |
+
else:
|
142 |
+
add_upsample = False
|
143 |
+
|
144 |
+
content_channel = content_start_channel * (2 ** (content_encoder_downsample_size - i - 1))
|
145 |
+
|
146 |
+
print("Load the up block ", up_block_type)
|
147 |
+
up_block = get_up_block(
|
148 |
+
up_block_type,
|
149 |
+
num_layers=layers_per_block + 1, # larger 1 than the down block
|
150 |
+
in_channels=input_channel,
|
151 |
+
out_channels=output_channel,
|
152 |
+
prev_output_channel=prev_output_channel,
|
153 |
+
temb_channels=time_embed_dim,
|
154 |
+
add_upsample=add_upsample,
|
155 |
+
resnet_eps=norm_eps,
|
156 |
+
resnet_act_fn=act_fn,
|
157 |
+
resnet_groups=norm_num_groups,
|
158 |
+
cross_attention_dim=cross_attention_dim,
|
159 |
+
attn_num_head_channels=attention_head_dim,
|
160 |
+
upblock_index=i,
|
161 |
+
)
|
162 |
+
self.up_blocks.append(up_block)
|
163 |
+
prev_output_channel = output_channel
|
164 |
+
|
165 |
+
# out
|
166 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
|
167 |
+
self.conv_act = nn.SiLU()
|
168 |
+
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
|
169 |
+
|
170 |
+
def set_attention_slice(self, slice_size):
|
171 |
+
if slice_size is not None and self.config.attention_head_dim % slice_size != 0:
|
172 |
+
raise ValueError(
|
173 |
+
f"Make sure slice_size {slice_size} is a divisor of "
|
174 |
+
f"the number of heads used in cross_attention {self.config.attention_head_dim}"
|
175 |
+
)
|
176 |
+
if slice_size is not None and slice_size > self.config.attention_head_dim:
|
177 |
+
raise ValueError(
|
178 |
+
f"Chunk_size {slice_size} has to be smaller or equal to "
|
179 |
+
f"the number of heads used in cross_attention {self.config.attention_head_dim}"
|
180 |
+
)
|
181 |
+
|
182 |
+
for block in self.down_blocks:
|
183 |
+
if hasattr(block, "attentions") and block.attentions is not None:
|
184 |
+
block.set_attention_slice(slice_size)
|
185 |
+
|
186 |
+
self.mid_block.set_attention_slice(slice_size)
|
187 |
+
|
188 |
+
for block in self.up_blocks:
|
189 |
+
if hasattr(block, "attentions") and block.attentions is not None:
|
190 |
+
block.set_attention_slice(slice_size)
|
191 |
+
|
192 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
193 |
+
if isinstance(module, (DownBlock2D, UpBlock2D)):
|
194 |
+
module.gradient_checkpointing = value
|
195 |
+
|
196 |
+
def forward(
|
197 |
+
self,
|
198 |
+
sample: torch.FloatTensor,
|
199 |
+
timestep: Union[torch.Tensor, float, int],
|
200 |
+
encoder_hidden_states: torch.Tensor,
|
201 |
+
content_encoder_downsample_size: int = 4,
|
202 |
+
return_dict: bool = False,
|
203 |
+
) -> Union[UNetOutput, Tuple]:
|
204 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
205 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
206 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
207 |
+
# on the fly if necessary.
|
208 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
209 |
+
|
210 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
211 |
+
forward_upsample_size = False
|
212 |
+
upsample_size = None
|
213 |
+
|
214 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
215 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
216 |
+
forward_upsample_size = True
|
217 |
+
|
218 |
+
# 1. time
|
219 |
+
timesteps = timestep # only one time
|
220 |
+
if not torch.is_tensor(timesteps):
|
221 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
222 |
+
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
|
223 |
+
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
224 |
+
timesteps = timesteps[None].to(sample.device)
|
225 |
+
|
226 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
227 |
+
timesteps = timesteps.expand(sample.shape[0])
|
228 |
+
|
229 |
+
t_emb = self.time_proj(timesteps)
|
230 |
+
|
231 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
232 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
233 |
+
# there might be better ways to encapsulate this.
|
234 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
235 |
+
emb = self.time_embedding(t_emb) # projection
|
236 |
+
|
237 |
+
# 2. pre-process
|
238 |
+
sample = self.conv_in(sample)
|
239 |
+
|
240 |
+
# 3. down
|
241 |
+
down_block_res_samples = (sample,)
|
242 |
+
for index, downsample_block in enumerate(self.down_blocks):
|
243 |
+
if (hasattr(downsample_block, "attentions") and downsample_block.attentions is not None) or hasattr(downsample_block, "content_attentions"):
|
244 |
+
sample, res_samples = downsample_block(
|
245 |
+
hidden_states=sample,
|
246 |
+
temb=emb,
|
247 |
+
encoder_hidden_states=encoder_hidden_states,
|
248 |
+
index=index,
|
249 |
+
)
|
250 |
+
else:
|
251 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
252 |
+
|
253 |
+
down_block_res_samples += res_samples
|
254 |
+
|
255 |
+
# 4. mid
|
256 |
+
if self.mid_block is not None:
|
257 |
+
sample = self.mid_block(
|
258 |
+
sample,
|
259 |
+
emb,
|
260 |
+
index=content_encoder_downsample_size,
|
261 |
+
encoder_hidden_states=encoder_hidden_states
|
262 |
+
)
|
263 |
+
|
264 |
+
# 5. up
|
265 |
+
offset_out_sum = 0
|
266 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
267 |
+
is_final_block = i == len(self.up_blocks) - 1
|
268 |
+
|
269 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
270 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
271 |
+
|
272 |
+
# if we have not reached the final block and need to forward the
|
273 |
+
# upsample size, we do it here
|
274 |
+
if not is_final_block and forward_upsample_size:
|
275 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
276 |
+
|
277 |
+
if (hasattr(upsample_block, "attentions") and upsample_block.attentions is not None) or hasattr(upsample_block, "content_attentions"):
|
278 |
+
sample, offset_out = upsample_block(
|
279 |
+
hidden_states=sample,
|
280 |
+
temb=emb,
|
281 |
+
res_hidden_states_tuple=res_samples,
|
282 |
+
style_structure_features=encoder_hidden_states[3],
|
283 |
+
encoder_hidden_states=encoder_hidden_states[2],
|
284 |
+
)
|
285 |
+
offset_out_sum += offset_out
|
286 |
+
else:
|
287 |
+
sample = upsample_block(
|
288 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
289 |
+
)
|
290 |
+
|
291 |
+
# 6. post-process
|
292 |
+
sample = self.conv_norm_out(sample)
|
293 |
+
sample = self.conv_act(sample)
|
294 |
+
sample = self.conv_out(sample)
|
295 |
+
|
296 |
+
if not return_dict:
|
297 |
+
return (sample, offset_out_sum)
|
298 |
+
|
299 |
+
return UNetOutput(sample=sample)
|
src/modules/unet_blocks.py
ADDED
@@ -0,0 +1,661 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from torchvision.ops import DeformConv2d
|
4 |
+
|
5 |
+
from .attention import (SpatialTransformer,
|
6 |
+
OffsetRefStrucInter,
|
7 |
+
ChannelAttnBlock)
|
8 |
+
from .resnet import (Downsample2D,
|
9 |
+
ResnetBlock2D,
|
10 |
+
Upsample2D)
|
11 |
+
|
12 |
+
|
13 |
+
def get_down_block(
|
14 |
+
down_block_type,
|
15 |
+
num_layers,
|
16 |
+
in_channels,
|
17 |
+
out_channels,
|
18 |
+
temb_channels,
|
19 |
+
add_downsample,
|
20 |
+
resnet_eps,
|
21 |
+
resnet_act_fn,
|
22 |
+
attn_num_head_channels,
|
23 |
+
resnet_groups=None,
|
24 |
+
cross_attention_dim=None,
|
25 |
+
downsample_padding=None,
|
26 |
+
channel_attn=False,
|
27 |
+
content_channel=32,
|
28 |
+
reduction=32):
|
29 |
+
|
30 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
31 |
+
if down_block_type == "DownBlock2D":
|
32 |
+
return DownBlock2D(
|
33 |
+
num_layers=num_layers,
|
34 |
+
in_channels=in_channels,
|
35 |
+
out_channels=out_channels,
|
36 |
+
temb_channels=temb_channels,
|
37 |
+
add_downsample=add_downsample,
|
38 |
+
resnet_eps=resnet_eps,
|
39 |
+
resnet_act_fn=resnet_act_fn,
|
40 |
+
resnet_groups=resnet_groups,
|
41 |
+
downsample_padding=downsample_padding)
|
42 |
+
elif down_block_type == "MCADownBlock2D":
|
43 |
+
if cross_attention_dim is None:
|
44 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
45 |
+
return MCADownBlock2D(
|
46 |
+
num_layers=num_layers,
|
47 |
+
in_channels=in_channels,
|
48 |
+
out_channels=out_channels,
|
49 |
+
channel_attn=channel_attn,
|
50 |
+
temb_channels=temb_channels,
|
51 |
+
add_downsample=add_downsample,
|
52 |
+
resnet_eps=resnet_eps,
|
53 |
+
resnet_act_fn=resnet_act_fn,
|
54 |
+
resnet_groups=resnet_groups,
|
55 |
+
downsample_padding=downsample_padding,
|
56 |
+
cross_attention_dim=cross_attention_dim,
|
57 |
+
attn_num_head_channels=attn_num_head_channels,
|
58 |
+
content_channel=content_channel,
|
59 |
+
reduction=reduction)
|
60 |
+
else:
|
61 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
62 |
+
|
63 |
+
|
64 |
+
def get_up_block(
|
65 |
+
up_block_type,
|
66 |
+
num_layers,
|
67 |
+
in_channels,
|
68 |
+
out_channels,
|
69 |
+
prev_output_channel,
|
70 |
+
temb_channels,
|
71 |
+
add_upsample,
|
72 |
+
resnet_eps,
|
73 |
+
resnet_act_fn,
|
74 |
+
attn_num_head_channels,
|
75 |
+
upblock_index,
|
76 |
+
resnet_groups=None,
|
77 |
+
cross_attention_dim=None,
|
78 |
+
structure_feature_begin=64):
|
79 |
+
|
80 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
81 |
+
if up_block_type == "UpBlock2D":
|
82 |
+
return UpBlock2D(
|
83 |
+
num_layers=num_layers,
|
84 |
+
in_channels=in_channels,
|
85 |
+
out_channels=out_channels,
|
86 |
+
prev_output_channel=prev_output_channel,
|
87 |
+
temb_channels=temb_channels,
|
88 |
+
add_upsample=add_upsample,
|
89 |
+
resnet_eps=resnet_eps,
|
90 |
+
resnet_act_fn=resnet_act_fn,
|
91 |
+
resnet_groups=resnet_groups)
|
92 |
+
elif up_block_type == "StyleRSIUpBlock2D":
|
93 |
+
return StyleRSIUpBlock2D(
|
94 |
+
num_layers=num_layers,
|
95 |
+
in_channels=in_channels,
|
96 |
+
out_channels=out_channels,
|
97 |
+
prev_output_channel=prev_output_channel,
|
98 |
+
temb_channels=temb_channels,
|
99 |
+
add_upsample=add_upsample,
|
100 |
+
resnet_eps=resnet_eps,
|
101 |
+
resnet_act_fn=resnet_act_fn,
|
102 |
+
resnet_groups=resnet_groups,
|
103 |
+
cross_attention_dim=cross_attention_dim,
|
104 |
+
attn_num_head_channels=attn_num_head_channels,
|
105 |
+
structure_feature_begin=structure_feature_begin,
|
106 |
+
upblock_index=upblock_index)
|
107 |
+
else:
|
108 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
109 |
+
|
110 |
+
|
111 |
+
class UNetMidMCABlock2D(nn.Module):
|
112 |
+
def __init__(
|
113 |
+
self,
|
114 |
+
in_channels: int,
|
115 |
+
temb_channels: int,
|
116 |
+
channel_attn: bool = False,
|
117 |
+
dropout: float = 0.0,
|
118 |
+
num_layers: int = 1,
|
119 |
+
resnet_eps: float = 1e-6,
|
120 |
+
resnet_time_scale_shift: str = "default",
|
121 |
+
resnet_act_fn: str = "swish",
|
122 |
+
resnet_groups: int = 32,
|
123 |
+
resnet_pre_norm: bool = True,
|
124 |
+
attn_num_head_channels=1,
|
125 |
+
attention_type="default",
|
126 |
+
output_scale_factor=1.0,
|
127 |
+
cross_attention_dim=1280,
|
128 |
+
content_channel=256,
|
129 |
+
reduction=32,
|
130 |
+
**kwargs,
|
131 |
+
):
|
132 |
+
super().__init__()
|
133 |
+
|
134 |
+
self.attention_type = attention_type
|
135 |
+
self.attn_num_head_channels = attn_num_head_channels
|
136 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
137 |
+
|
138 |
+
resnets = [
|
139 |
+
ResnetBlock2D(
|
140 |
+
in_channels=in_channels,
|
141 |
+
out_channels=in_channels,
|
142 |
+
temb_channels=temb_channels,
|
143 |
+
eps=resnet_eps,
|
144 |
+
groups=resnet_groups,
|
145 |
+
dropout=dropout,
|
146 |
+
time_embedding_norm=resnet_time_scale_shift,
|
147 |
+
non_linearity=resnet_act_fn,
|
148 |
+
output_scale_factor=output_scale_factor,
|
149 |
+
pre_norm=resnet_pre_norm,
|
150 |
+
)
|
151 |
+
]
|
152 |
+
content_attentions = []
|
153 |
+
style_attentions = []
|
154 |
+
|
155 |
+
for _ in range(num_layers):
|
156 |
+
content_attentions.append(
|
157 |
+
ChannelAttnBlock(
|
158 |
+
in_channels=in_channels + content_channel,
|
159 |
+
out_channels=in_channels,
|
160 |
+
non_linearity=resnet_act_fn,
|
161 |
+
channel_attn=channel_attn,
|
162 |
+
reduction=reduction,
|
163 |
+
)
|
164 |
+
)
|
165 |
+
style_attentions.append(
|
166 |
+
SpatialTransformer(
|
167 |
+
in_channels,
|
168 |
+
attn_num_head_channels,
|
169 |
+
in_channels // attn_num_head_channels,
|
170 |
+
depth=1,
|
171 |
+
context_dim=cross_attention_dim,
|
172 |
+
num_groups=resnet_groups,
|
173 |
+
)
|
174 |
+
)
|
175 |
+
resnets.append(
|
176 |
+
ResnetBlock2D(
|
177 |
+
in_channels=in_channels,
|
178 |
+
out_channels=in_channels,
|
179 |
+
temb_channels=temb_channels,
|
180 |
+
eps=resnet_eps,
|
181 |
+
groups=resnet_groups,
|
182 |
+
dropout=dropout,
|
183 |
+
time_embedding_norm=resnet_time_scale_shift,
|
184 |
+
non_linearity=resnet_act_fn,
|
185 |
+
output_scale_factor=output_scale_factor,
|
186 |
+
pre_norm=resnet_pre_norm,
|
187 |
+
)
|
188 |
+
)
|
189 |
+
|
190 |
+
self.content_attentions = nn.ModuleList(content_attentions)
|
191 |
+
self.style_attentions = nn.ModuleList(style_attentions)
|
192 |
+
self.resnets = nn.ModuleList(resnets)
|
193 |
+
|
194 |
+
def forward(
|
195 |
+
self,
|
196 |
+
hidden_states,
|
197 |
+
temb=None,
|
198 |
+
encoder_hidden_states=None,
|
199 |
+
index=None,
|
200 |
+
):
|
201 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
202 |
+
for content_attn, style_attn, resnet in zip(self.content_attentions, self.style_attentions, self.resnets[1:]):
|
203 |
+
|
204 |
+
# content
|
205 |
+
current_content_feature = encoder_hidden_states[1][index]
|
206 |
+
hidden_states = content_attn(hidden_states, current_content_feature)
|
207 |
+
|
208 |
+
# t_embed
|
209 |
+
hidden_states = resnet(hidden_states, temb)
|
210 |
+
|
211 |
+
# style
|
212 |
+
current_style_feature = encoder_hidden_states[0]
|
213 |
+
batch_size, channel, height, width = current_style_feature.shape
|
214 |
+
current_style_feature = current_style_feature.permute(0, 2, 3, 1).reshape(batch_size, height*width, channel)
|
215 |
+
hidden_states = style_attn(hidden_states, context=current_style_feature)
|
216 |
+
|
217 |
+
return hidden_states
|
218 |
+
|
219 |
+
|
220 |
+
class MCADownBlock2D(nn.Module):
|
221 |
+
def __init__(
|
222 |
+
self,
|
223 |
+
in_channels: int,
|
224 |
+
out_channels: int,
|
225 |
+
temb_channels: int,
|
226 |
+
dropout: float = 0.0,
|
227 |
+
channel_attn: bool = False,
|
228 |
+
num_layers: int = 1,
|
229 |
+
resnet_eps: float = 1e-6,
|
230 |
+
resnet_time_scale_shift: str = "default",
|
231 |
+
resnet_act_fn: str = "swish",
|
232 |
+
resnet_groups: int = 32,
|
233 |
+
resnet_pre_norm: bool = True,
|
234 |
+
attn_num_head_channels=1,
|
235 |
+
cross_attention_dim=1280,
|
236 |
+
attention_type="default",
|
237 |
+
output_scale_factor=1.0,
|
238 |
+
downsample_padding=1,
|
239 |
+
add_downsample=True,
|
240 |
+
content_channel=16,
|
241 |
+
reduction=32,
|
242 |
+
):
|
243 |
+
super().__init__()
|
244 |
+
content_attentions = []
|
245 |
+
resnets = []
|
246 |
+
style_attentions = []
|
247 |
+
|
248 |
+
self.attention_type = attention_type
|
249 |
+
self.attn_num_head_channels = attn_num_head_channels
|
250 |
+
|
251 |
+
for i in range(num_layers):
|
252 |
+
in_channels = in_channels if i == 0 else out_channels
|
253 |
+
content_attentions.append(
|
254 |
+
ChannelAttnBlock(
|
255 |
+
in_channels=in_channels+content_channel,
|
256 |
+
out_channels=in_channels,
|
257 |
+
groups=resnet_groups,
|
258 |
+
non_linearity=resnet_act_fn,
|
259 |
+
channel_attn=channel_attn,
|
260 |
+
reduction=reduction,
|
261 |
+
)
|
262 |
+
)
|
263 |
+
resnets.append(
|
264 |
+
ResnetBlock2D(
|
265 |
+
in_channels=in_channels,
|
266 |
+
out_channels=out_channels,
|
267 |
+
temb_channels=temb_channels,
|
268 |
+
eps=resnet_eps,
|
269 |
+
groups=resnet_groups,
|
270 |
+
dropout=dropout,
|
271 |
+
time_embedding_norm=resnet_time_scale_shift,
|
272 |
+
non_linearity=resnet_act_fn,
|
273 |
+
output_scale_factor=output_scale_factor,
|
274 |
+
pre_norm=resnet_pre_norm,
|
275 |
+
)
|
276 |
+
)
|
277 |
+
print("The style_attention cross attention dim in Down Block {} layer is {}".format(i+1, cross_attention_dim))
|
278 |
+
style_attentions.append(
|
279 |
+
SpatialTransformer(
|
280 |
+
out_channels,
|
281 |
+
attn_num_head_channels,
|
282 |
+
out_channels // attn_num_head_channels,
|
283 |
+
depth=1,
|
284 |
+
context_dim=cross_attention_dim,
|
285 |
+
num_groups=resnet_groups,
|
286 |
+
)
|
287 |
+
)
|
288 |
+
self.content_attentions = nn.ModuleList(content_attentions)
|
289 |
+
self.style_attentions = nn.ModuleList(style_attentions)
|
290 |
+
self.resnets = nn.ModuleList(resnets)
|
291 |
+
|
292 |
+
if num_layers == 1:
|
293 |
+
in_channels = out_channels
|
294 |
+
if add_downsample:
|
295 |
+
self.downsamplers = nn.ModuleList(
|
296 |
+
[
|
297 |
+
Downsample2D(
|
298 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
299 |
+
)
|
300 |
+
]
|
301 |
+
)
|
302 |
+
else:
|
303 |
+
self.downsamplers = None
|
304 |
+
|
305 |
+
self.gradient_checkpointing = False
|
306 |
+
|
307 |
+
def forward(
|
308 |
+
self,
|
309 |
+
hidden_states,
|
310 |
+
index,
|
311 |
+
temb=None,
|
312 |
+
encoder_hidden_states=None
|
313 |
+
):
|
314 |
+
output_states = ()
|
315 |
+
|
316 |
+
for content_attn, resnet, style_attn in zip(self.content_attentions, self.resnets, self.style_attentions):
|
317 |
+
|
318 |
+
# content
|
319 |
+
current_content_feature = encoder_hidden_states[1][index]
|
320 |
+
hidden_states = content_attn(hidden_states, current_content_feature)
|
321 |
+
|
322 |
+
# t_embed
|
323 |
+
hidden_states = resnet(hidden_states, temb)
|
324 |
+
|
325 |
+
# style
|
326 |
+
current_style_feature = encoder_hidden_states[0]
|
327 |
+
batch_size, channel, height, width = current_style_feature.shape
|
328 |
+
current_style_feature = current_style_feature.permute(0, 2, 3, 1).reshape(batch_size, height*width, channel)
|
329 |
+
hidden_states = style_attn(hidden_states, context=current_style_feature)
|
330 |
+
|
331 |
+
output_states += (hidden_states,)
|
332 |
+
|
333 |
+
if self.downsamplers is not None:
|
334 |
+
for downsampler in self.downsamplers:
|
335 |
+
hidden_states = downsampler(hidden_states)
|
336 |
+
|
337 |
+
output_states += (hidden_states,)
|
338 |
+
|
339 |
+
return hidden_states, output_states
|
340 |
+
|
341 |
+
|
342 |
+
class DownBlock2D(nn.Module):
|
343 |
+
def __init__(
|
344 |
+
self,
|
345 |
+
in_channels: int,
|
346 |
+
out_channels: int,
|
347 |
+
temb_channels: int,
|
348 |
+
dropout: float = 0.0,
|
349 |
+
num_layers: int = 1,
|
350 |
+
resnet_eps: float = 1e-6,
|
351 |
+
resnet_time_scale_shift: str = "default",
|
352 |
+
resnet_act_fn: str = "swish",
|
353 |
+
resnet_groups: int = 32,
|
354 |
+
resnet_pre_norm: bool = True,
|
355 |
+
output_scale_factor=1.0,
|
356 |
+
add_downsample=True,
|
357 |
+
downsample_padding=1,
|
358 |
+
):
|
359 |
+
super().__init__()
|
360 |
+
resnets = []
|
361 |
+
|
362 |
+
for i in range(num_layers):
|
363 |
+
in_channels = in_channels if i == 0 else out_channels
|
364 |
+
resnets.append(
|
365 |
+
ResnetBlock2D(
|
366 |
+
in_channels=in_channels,
|
367 |
+
out_channels=out_channels,
|
368 |
+
temb_channels=temb_channels,
|
369 |
+
eps=resnet_eps,
|
370 |
+
groups=resnet_groups,
|
371 |
+
dropout=dropout,
|
372 |
+
time_embedding_norm=resnet_time_scale_shift,
|
373 |
+
non_linearity=resnet_act_fn,
|
374 |
+
output_scale_factor=output_scale_factor,
|
375 |
+
pre_norm=resnet_pre_norm,
|
376 |
+
)
|
377 |
+
)
|
378 |
+
|
379 |
+
self.resnets = nn.ModuleList(resnets)
|
380 |
+
|
381 |
+
if num_layers == 1:
|
382 |
+
in_channels = out_channels
|
383 |
+
if add_downsample:
|
384 |
+
self.downsamplers = nn.ModuleList(
|
385 |
+
[
|
386 |
+
Downsample2D(
|
387 |
+
in_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
388 |
+
)
|
389 |
+
]
|
390 |
+
)
|
391 |
+
else:
|
392 |
+
self.downsamplers = None
|
393 |
+
|
394 |
+
self.gradient_checkpointing = False
|
395 |
+
|
396 |
+
def forward(self, hidden_states, temb=None):
|
397 |
+
output_states = ()
|
398 |
+
|
399 |
+
for resnet in self.resnets:
|
400 |
+
if self.training and self.gradient_checkpointing:
|
401 |
+
|
402 |
+
def create_custom_forward(module):
|
403 |
+
def custom_forward(*inputs):
|
404 |
+
return module(*inputs)
|
405 |
+
|
406 |
+
return custom_forward
|
407 |
+
|
408 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
409 |
+
else:
|
410 |
+
hidden_states = resnet(hidden_states, temb)
|
411 |
+
|
412 |
+
output_states += (hidden_states,)
|
413 |
+
|
414 |
+
if self.downsamplers is not None:
|
415 |
+
for downsampler in self.downsamplers:
|
416 |
+
hidden_states = downsampler(hidden_states)
|
417 |
+
|
418 |
+
output_states += (hidden_states,)
|
419 |
+
|
420 |
+
return hidden_states, output_states
|
421 |
+
|
422 |
+
|
423 |
+
class StyleRSIUpBlock2D(nn.Module):
|
424 |
+
def __init__(
|
425 |
+
self,
|
426 |
+
in_channels: int,
|
427 |
+
out_channels: int,
|
428 |
+
prev_output_channel: int,
|
429 |
+
temb_channels: int,
|
430 |
+
dropout: float = 0.0,
|
431 |
+
num_layers: int = 1,
|
432 |
+
resnet_eps: float = 1e-6,
|
433 |
+
resnet_time_scale_shift: str = "default",
|
434 |
+
resnet_act_fn: str = "swish",
|
435 |
+
resnet_groups: int = 32,
|
436 |
+
resnet_pre_norm: bool = True,
|
437 |
+
attn_num_head_channels=1,
|
438 |
+
cross_attention_dim=1280,
|
439 |
+
attention_type="default",
|
440 |
+
output_scale_factor=1.0,
|
441 |
+
downsample_padding=1,
|
442 |
+
structure_feature_begin=64,
|
443 |
+
upblock_index=1,
|
444 |
+
add_upsample=True,
|
445 |
+
):
|
446 |
+
super().__init__()
|
447 |
+
resnets = []
|
448 |
+
attentions = []
|
449 |
+
sc_interpreter_offsets = []
|
450 |
+
dcn_deforms = []
|
451 |
+
|
452 |
+
self.attention_type = attention_type
|
453 |
+
self.attn_num_head_channels = attn_num_head_channels
|
454 |
+
self.upblock_index = upblock_index
|
455 |
+
|
456 |
+
for i in range(num_layers):
|
457 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
458 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
459 |
+
|
460 |
+
sc_interpreter_offsets.append(
|
461 |
+
OffsetRefStrucInter(
|
462 |
+
res_in_channels=res_skip_channels,
|
463 |
+
style_feat_in_channels=int(structure_feature_begin * 2 / upblock_index),
|
464 |
+
n_heads=attn_num_head_channels,
|
465 |
+
num_groups=resnet_groups,
|
466 |
+
)
|
467 |
+
)
|
468 |
+
dcn_deforms.append(
|
469 |
+
DeformConv2d(
|
470 |
+
in_channels=res_skip_channels,
|
471 |
+
out_channels=res_skip_channels,
|
472 |
+
kernel_size=(3, 3),
|
473 |
+
stride=1,
|
474 |
+
padding=1,
|
475 |
+
dilation=1,
|
476 |
+
)
|
477 |
+
)
|
478 |
+
|
479 |
+
resnets.append(
|
480 |
+
ResnetBlock2D(
|
481 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
482 |
+
out_channels=out_channels,
|
483 |
+
temb_channels=temb_channels,
|
484 |
+
eps=resnet_eps,
|
485 |
+
groups=resnet_groups,
|
486 |
+
dropout=dropout,
|
487 |
+
time_embedding_norm=resnet_time_scale_shift,
|
488 |
+
non_linearity=resnet_act_fn,
|
489 |
+
output_scale_factor=output_scale_factor,
|
490 |
+
pre_norm=resnet_pre_norm,
|
491 |
+
)
|
492 |
+
)
|
493 |
+
attentions.append(
|
494 |
+
SpatialTransformer(
|
495 |
+
out_channels,
|
496 |
+
attn_num_head_channels,
|
497 |
+
out_channels // attn_num_head_channels,
|
498 |
+
depth=1,
|
499 |
+
context_dim=cross_attention_dim,
|
500 |
+
num_groups=resnet_groups,
|
501 |
+
)
|
502 |
+
)
|
503 |
+
self.sc_interpreter_offsets = nn.ModuleList(sc_interpreter_offsets)
|
504 |
+
self.dcn_deforms = nn.ModuleList(dcn_deforms)
|
505 |
+
self.attentions = nn.ModuleList(attentions)
|
506 |
+
self.resnets = nn.ModuleList(resnets)
|
507 |
+
|
508 |
+
self.num_layers = num_layers
|
509 |
+
|
510 |
+
if add_upsample:
|
511 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
512 |
+
else:
|
513 |
+
self.upsamplers = None
|
514 |
+
|
515 |
+
self.gradient_checkpointing = False
|
516 |
+
|
517 |
+
def set_attention_slice(self, slice_size):
|
518 |
+
if slice_size is not None and self.attn_num_head_channels % slice_size != 0:
|
519 |
+
raise ValueError(
|
520 |
+
f"Make sure slice_size {slice_size} is a divisor of "
|
521 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
522 |
+
)
|
523 |
+
if slice_size is not None and slice_size > self.attn_num_head_channels:
|
524 |
+
raise ValueError(
|
525 |
+
f"Chunk_size {slice_size} has to be smaller or equal to "
|
526 |
+
f"the number of heads used in cross_attention {self.attn_num_head_channels}"
|
527 |
+
)
|
528 |
+
|
529 |
+
for attn in self.attentions:
|
530 |
+
attn._set_attention_slice(slice_size)
|
531 |
+
|
532 |
+
self.gradient_checkpointing = False
|
533 |
+
|
534 |
+
def forward(
|
535 |
+
self,
|
536 |
+
hidden_states,
|
537 |
+
res_hidden_states_tuple,
|
538 |
+
style_structure_features,
|
539 |
+
temb=None,
|
540 |
+
encoder_hidden_states=None,
|
541 |
+
upsample_size=None,
|
542 |
+
):
|
543 |
+
total_offset = 0
|
544 |
+
|
545 |
+
style_content_feat = style_structure_features[-self.upblock_index-2]
|
546 |
+
|
547 |
+
for i, (sc_inter_offset, dcn_deform, resnet, attn) in \
|
548 |
+
enumerate(zip(self.sc_interpreter_offsets, self.dcn_deforms, self.resnets, self.attentions)):
|
549 |
+
# pop res hidden states
|
550 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
551 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
552 |
+
|
553 |
+
# Skip Style Content Interpreter by DCN
|
554 |
+
offset = sc_inter_offset(res_hidden_states, style_content_feat)
|
555 |
+
offset = offset.contiguous()
|
556 |
+
# offset sum
|
557 |
+
offset_sum = torch.mean(torch.abs(offset))
|
558 |
+
total_offset += offset_sum
|
559 |
+
|
560 |
+
res_hidden_states = res_hidden_states.contiguous()
|
561 |
+
res_hidden_states = dcn_deform(res_hidden_states, offset)
|
562 |
+
# concat as input
|
563 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
564 |
+
|
565 |
+
if self.training and self.gradient_checkpointing:
|
566 |
+
|
567 |
+
def create_custom_forward(module):
|
568 |
+
def custom_forward(*inputs):
|
569 |
+
return module(*inputs)
|
570 |
+
|
571 |
+
return custom_forward
|
572 |
+
|
573 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
574 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
575 |
+
create_custom_forward(attn), hidden_states, encoder_hidden_states
|
576 |
+
)
|
577 |
+
else:
|
578 |
+
hidden_states = resnet(hidden_states, temb)
|
579 |
+
hidden_states = attn(hidden_states, context=encoder_hidden_states)
|
580 |
+
|
581 |
+
if self.upsamplers is not None:
|
582 |
+
for upsampler in self.upsamplers:
|
583 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
584 |
+
|
585 |
+
offset_out = total_offset / self.num_layers
|
586 |
+
|
587 |
+
return hidden_states, offset_out
|
588 |
+
|
589 |
+
|
590 |
+
class UpBlock2D(nn.Module):
|
591 |
+
def __init__(
|
592 |
+
self,
|
593 |
+
in_channels: int,
|
594 |
+
prev_output_channel: int,
|
595 |
+
out_channels: int,
|
596 |
+
temb_channels: int,
|
597 |
+
dropout: float = 0.0,
|
598 |
+
num_layers: int = 1,
|
599 |
+
resnet_eps: float = 1e-6,
|
600 |
+
resnet_time_scale_shift: str = "default",
|
601 |
+
resnet_act_fn: str = "swish",
|
602 |
+
resnet_groups: int = 32,
|
603 |
+
resnet_pre_norm: bool = True,
|
604 |
+
output_scale_factor=1.0,
|
605 |
+
add_upsample=True,
|
606 |
+
):
|
607 |
+
super().__init__()
|
608 |
+
resnets = []
|
609 |
+
|
610 |
+
for i in range(num_layers):
|
611 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
612 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
613 |
+
|
614 |
+
resnets.append(
|
615 |
+
ResnetBlock2D(
|
616 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
617 |
+
out_channels=out_channels,
|
618 |
+
temb_channels=temb_channels,
|
619 |
+
eps=resnet_eps,
|
620 |
+
groups=resnet_groups,
|
621 |
+
dropout=dropout,
|
622 |
+
time_embedding_norm=resnet_time_scale_shift,
|
623 |
+
non_linearity=resnet_act_fn,
|
624 |
+
output_scale_factor=output_scale_factor,
|
625 |
+
pre_norm=resnet_pre_norm,
|
626 |
+
)
|
627 |
+
)
|
628 |
+
|
629 |
+
self.resnets = nn.ModuleList(resnets)
|
630 |
+
|
631 |
+
if add_upsample:
|
632 |
+
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
633 |
+
else:
|
634 |
+
self.upsamplers = None
|
635 |
+
|
636 |
+
self.gradient_checkpointing = False
|
637 |
+
|
638 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
639 |
+
for resnet in self.resnets:
|
640 |
+
# pop res hidden states
|
641 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
642 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
643 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
644 |
+
|
645 |
+
if self.training and self.gradient_checkpointing:
|
646 |
+
|
647 |
+
def create_custom_forward(module):
|
648 |
+
def custom_forward(*inputs):
|
649 |
+
return module(*inputs)
|
650 |
+
|
651 |
+
return custom_forward
|
652 |
+
|
653 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
654 |
+
else:
|
655 |
+
hidden_states = resnet(hidden_states, temb)
|
656 |
+
|
657 |
+
if self.upsamplers is not None:
|
658 |
+
for upsampler in self.upsamplers:
|
659 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
660 |
+
|
661 |
+
return hidden_states
|
ttf/KaiXinSongA.ttf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e11c8d15dcef64e5b55548e5764442d1b1f3be6fc52346f1338af9b48cf19bd
|
3 |
+
size 10220244
|
ttf/KaiXinSongB.ttf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da7bec78a819495232d286244fe0c1f95d147e84811b80ece047169c57cd4a45
|
3 |
+
size 27296536
|
utils.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import yaml
|
4 |
+
import copy
|
5 |
+
import pygame
|
6 |
+
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
+
from fontTools.ttLib import TTFont
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torchvision.transforms as transforms
|
12 |
+
|
13 |
+
def save_args_to_yaml(args, output_file):
|
14 |
+
# Convert args namespace to a dictionary
|
15 |
+
args_dict = vars(args)
|
16 |
+
|
17 |
+
# Write the dictionary to a YAML file
|
18 |
+
with open(output_file, 'w') as yaml_file:
|
19 |
+
yaml.dump(args_dict, yaml_file, default_flow_style=False)
|
20 |
+
|
21 |
+
|
22 |
+
def save_single_image(save_dir, image):
|
23 |
+
|
24 |
+
save_path = f"{save_dir}/out_single.png"
|
25 |
+
image.save(save_path)
|
26 |
+
|
27 |
+
|
28 |
+
def save_image_with_content_style(save_dir, image, content_image_pil, content_image_path, style_image_path, resolution):
|
29 |
+
|
30 |
+
new_image = Image.new('RGB', (resolution*3, resolution))
|
31 |
+
if content_image_pil is not None:
|
32 |
+
content_image = content_image_pil
|
33 |
+
else:
|
34 |
+
content_image = Image.open(content_image_path).convert("RGB").resize((resolution, resolution), Image.BILINEAR)
|
35 |
+
style_image = Image.open(style_image_path).convert("RGB").resize((resolution, resolution), Image.BILINEAR)
|
36 |
+
|
37 |
+
new_image.paste(content_image, (0, 0))
|
38 |
+
new_image.paste(style_image, (resolution, 0))
|
39 |
+
new_image.paste(image, (resolution*2, 0))
|
40 |
+
|
41 |
+
save_path = f"{save_dir}/out_with_cs.jpg"
|
42 |
+
new_image.save(save_path)
|
43 |
+
|
44 |
+
|
45 |
+
def x0_from_epsilon(scheduler, noise_pred, x_t, timesteps):
|
46 |
+
"""Return the x_0 from epsilon
|
47 |
+
"""
|
48 |
+
batch_size = noise_pred.shape[0]
|
49 |
+
for i in range(batch_size):
|
50 |
+
noise_pred_i = noise_pred[i]
|
51 |
+
noise_pred_i = noise_pred_i[None, :]
|
52 |
+
t = timesteps[i]
|
53 |
+
x_t_i = x_t[i]
|
54 |
+
x_t_i = x_t_i[None, :]
|
55 |
+
|
56 |
+
pred_original_sample_i = scheduler.step(
|
57 |
+
model_output=noise_pred_i,
|
58 |
+
timestep=t,
|
59 |
+
sample=x_t_i,
|
60 |
+
# predict_epsilon=True,
|
61 |
+
generator=None,
|
62 |
+
return_dict=True,
|
63 |
+
).pred_original_sample
|
64 |
+
if i == 0:
|
65 |
+
pred_original_sample = pred_original_sample_i
|
66 |
+
else:
|
67 |
+
pred_original_sample = torch.cat((pred_original_sample, pred_original_sample_i), dim=0)
|
68 |
+
|
69 |
+
return pred_original_sample
|
70 |
+
|
71 |
+
|
72 |
+
def reNormalize_img(pred_original_sample):
|
73 |
+
pred_original_sample = (pred_original_sample / 2 + 0.5).clamp(0, 1)
|
74 |
+
|
75 |
+
return pred_original_sample
|
76 |
+
|
77 |
+
|
78 |
+
def normalize_mean_std(image):
|
79 |
+
transforms_norm = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
80 |
+
image = transforms_norm(image)
|
81 |
+
|
82 |
+
return image
|
83 |
+
|
84 |
+
|
85 |
+
def is_char_in_font(font_path, char):
|
86 |
+
TTFont_font = TTFont(font_path)
|
87 |
+
cmap = TTFont_font['cmap']
|
88 |
+
for subtable in cmap.tables:
|
89 |
+
if ord(char) in subtable.cmap:
|
90 |
+
return True
|
91 |
+
return False
|
92 |
+
|
93 |
+
|
94 |
+
def load_ttf(ttf_path, fsize=128):
|
95 |
+
pygame.init()
|
96 |
+
|
97 |
+
font = pygame.freetype.Font(ttf_path, size=fsize)
|
98 |
+
return font
|
99 |
+
|
100 |
+
|
101 |
+
def ttf2im(font, char, fsize=128):
|
102 |
+
|
103 |
+
try:
|
104 |
+
surface, _ = font.render(char)
|
105 |
+
except:
|
106 |
+
print("No glyph for char {}".format(char))
|
107 |
+
return
|
108 |
+
bg = np.full((fsize, fsize), 255)
|
109 |
+
imo = pygame.surfarray.pixels_alpha(surface).transpose(1, 0)
|
110 |
+
imo = 255 - np.array(Image.fromarray(imo))
|
111 |
+
im = copy.deepcopy(bg)
|
112 |
+
h, w = imo.shape[:2]
|
113 |
+
if h > fsize:
|
114 |
+
h, w = fsize, round(w*fsize/h)
|
115 |
+
imo = cv2.resize(imo, (w, h))
|
116 |
+
if w > fsize:
|
117 |
+
h, w = round(h*fsize/w), fsize
|
118 |
+
imo = cv2.resize(imo, (w, h))
|
119 |
+
x, y = round((fsize-w)/2), round((fsize-h)/2)
|
120 |
+
im[y:h+y, x:x+w] = imo
|
121 |
+
pil_im = Image.fromarray(im.astype('uint8')).convert('RGB')
|
122 |
+
|
123 |
+
return pil_im
|