Spaces:
Sleeping
Sleeping
| """This module provides a face detection implementation backed by SCRFD. | |
| https://github.com/deepinsight/insightface/tree/master/detection/scrfd | |
| """ | |
| import os | |
| import cv2 | |
| import numpy as np | |
| import onnxruntime | |
| def distance2bbox(points, distance, max_shape=None): | |
| """Decode distance prediction to bounding box. | |
| Args: | |
| points (Tensor): Shape (n, 2), [x, y]. | |
| distance (Tensor): Distance from the given point to 4 | |
| boundaries (left, top, right, bottom). | |
| max_shape (tuple): Shape of the image. | |
| Returns: | |
| Tensor: Decoded bboxes. | |
| """ | |
| x1 = points[:, 0] - distance[:, 0] | |
| y1 = points[:, 1] - distance[:, 1] | |
| x2 = points[:, 0] + distance[:, 2] | |
| y2 = points[:, 1] + distance[:, 3] | |
| if max_shape is not None: | |
| x1 = x1.clamp(min=0, max=max_shape[1]) | |
| y1 = y1.clamp(min=0, max=max_shape[0]) | |
| x2 = x2.clamp(min=0, max=max_shape[1]) | |
| y2 = y2.clamp(min=0, max=max_shape[0]) | |
| return np.stack([x1, y1, x2, y2], axis=-1) | |
| def distance2kps(points, distance, max_shape=None): | |
| """Decode distance prediction to bounding box. | |
| Args: | |
| points (Tensor): Shape (n, 2), [x, y]. | |
| distance (Tensor): Distance from the given point to 4 | |
| boundaries (left, top, right, bottom). | |
| max_shape (tuple): Shape of the image. | |
| Returns: | |
| Tensor: Decoded bboxes. | |
| """ | |
| preds = [] | |
| for i in range(0, distance.shape[1], 2): | |
| px = points[:, i % 2] + distance[:, i] | |
| py = points[:, i % 2 + 1] + distance[:, i + 1] | |
| if max_shape is not None: | |
| px = px.clamp(min=0, max=max_shape[1]) | |
| py = py.clamp(min=0, max=max_shape[0]) | |
| preds.append(px) | |
| preds.append(py) | |
| return np.stack(preds, axis=-1) | |
| class FaceDetector: | |
| def __init__(self, model_file): | |
| """Initialize a face detector. | |
| Args: | |
| model_file (str): ONNX model file path. | |
| """ | |
| assert os.path.exists(model_file), f"File not found: {model_file}" | |
| self.center_cache = {} | |
| self.nms_threshold = 0.4 | |
| self.session = onnxruntime.InferenceSession( | |
| model_file, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
| # Get model configurations from the model file. | |
| # What is the input like? | |
| input_cfg = self.session.get_inputs()[0] | |
| input_name = input_cfg.name | |
| input_shape = input_cfg.shape | |
| self.input_size = tuple(input_shape[2:4][::-1]) | |
| # How about the outputs? | |
| outputs = self.session.get_outputs() | |
| output_names = [] | |
| for o in outputs: | |
| output_names.append(o.name) | |
| self.input_name = input_name | |
| self.output_names = output_names | |
| # And any key points? | |
| self._with_kps = False | |
| self._anchor_ratio = 1.0 | |
| self._num_anchors = 1 | |
| if len(outputs) == 6: | |
| self._offset = 3 | |
| self._strides = [8, 16, 32] | |
| self._num_anchors = 2 | |
| elif len(outputs) == 9: | |
| self._offset = 3 | |
| self._strides = [8, 16, 32] | |
| self._num_anchors = 2 | |
| self._with_kps = True | |
| elif len(outputs) == 10: | |
| self._offset = 5 | |
| self._strides = [8, 16, 32, 64, 128] | |
| self._num_anchors = 1 | |
| elif len(outputs) == 15: | |
| self._offset = 5 | |
| self._strides = [8, 16, 32, 64, 128] | |
| self._num_anchors = 1 | |
| self._with_kps = True | |
| def _preprocess(self, image): | |
| inputs = cv2.cvtColor(image, cv2.COLOR_BGR2RGB).astype(np.float32) | |
| inputs = inputs - np.array([127.5, 127.5, 127.5]) | |
| inputs = inputs / 128 | |
| inputs = np.expand_dims(inputs, axis=0) | |
| inputs = np.transpose(inputs, [0, 3, 1, 2]) | |
| return inputs.astype(np.float32) | |
| def forward(self, img, threshold): | |
| scores_list = [] | |
| bboxes_list = [] | |
| kpss_list = [] | |
| inputs = self._preprocess(img) | |
| predictions = self.session.run( | |
| self.output_names, {self.input_name: inputs}) | |
| input_height = inputs.shape[2] | |
| input_width = inputs.shape[3] | |
| offset = self._offset | |
| for idx, stride in enumerate(self._strides): | |
| scores_pred = predictions[idx] | |
| bbox_preds = predictions[idx + offset] * stride | |
| if self._with_kps: | |
| kps_preds = predictions[idx + offset * 2] * stride | |
| # Generate the anchors. | |
| height = input_height // stride | |
| width = input_width // stride | |
| key = (height, width, stride) | |
| if key in self.center_cache: | |
| anchor_centers = self.center_cache[key] | |
| else: | |
| # solution-3: | |
| anchor_centers = np.stack( | |
| np.mgrid[:height, :width][::-1], axis=-1).astype(np.float32) | |
| anchor_centers = (anchor_centers * stride).reshape((-1, 2)) | |
| if self._num_anchors > 1: | |
| anchor_centers = np.stack( | |
| [anchor_centers] * self._num_anchors, axis=1).reshape((-1, 2)) | |
| if len(self.center_cache) < 100: | |
| self.center_cache[key] = anchor_centers | |
| # solution-1, c style: | |
| # anchor_centers = np.zeros( (height, width, 2), dtype=np.float32 ) | |
| # for i in range(height): | |
| # anchor_centers[i, :, 1] = i | |
| # for i in range(width): | |
| # anchor_centers[:, i, 0] = i | |
| # solution-2: | |
| # ax = np.arange(width, dtype=np.float32) | |
| # ay = np.arange(height, dtype=np.float32) | |
| # xv, yv = np.meshgrid(np.arange(width), np.arange(height)) | |
| # anchor_centers = np.stack([xv, yv], axis=-1).astype(np.float32) | |
| # Filter the results by scores and threshold. | |
| pos_inds = np.where(scores_pred >= threshold)[0] | |
| bboxes = distance2bbox(anchor_centers, bbox_preds) | |
| pos_scores = scores_pred[pos_inds] | |
| pos_bboxes = bboxes[pos_inds] | |
| scores_list.append(pos_scores) | |
| bboxes_list.append(pos_bboxes) | |
| if self._with_kps: | |
| kpss = distance2kps(anchor_centers, kps_preds) | |
| kpss = kpss.reshape((kpss.shape[0], -1, 2)) | |
| pos_kpss = kpss[pos_inds] | |
| kpss_list.append(pos_kpss) | |
| return scores_list, bboxes_list, kpss_list | |
| def _nms(self, detections): | |
| """None max suppression.""" | |
| x1 = detections[:, 0] | |
| y1 = detections[:, 1] | |
| x2 = detections[:, 2] | |
| y2 = detections[:, 3] | |
| scores = detections[:, 4] | |
| areas = (x2 - x1 + 1) * (y2 - y1 + 1) | |
| order = scores.argsort()[::-1] | |
| keep = [] | |
| while order.size > 0: | |
| i = order[0] | |
| keep.append(i) | |
| _x1 = np.maximum(x1[i], x1[order[1:]]) | |
| _y1 = np.maximum(y1[i], y1[order[1:]]) | |
| _x2 = np.minimum(x2[i], x2[order[1:]]) | |
| _y2 = np.minimum(y2[i], y2[order[1:]]) | |
| w = np.maximum(0.0, _x2 - _x1 + 1) | |
| h = np.maximum(0.0, _y2 - _y1 + 1) | |
| inter = w * h | |
| ovr = inter / (areas[i] + areas[order[1:]] - inter) | |
| inds = np.where(ovr <= self.nms_threshold)[0] | |
| order = order[inds + 1] | |
| return keep | |
| def detect(self, img, threshold=0.5, input_size=None, max_num=0, metric='default'): | |
| input_size = self.input_size if input_size is None else input_size | |
| # Rescale the image? | |
| img_height, img_width, _ = img.shape | |
| ratio_img = float(img_height) / img_width | |
| input_width, input_height = input_size | |
| ratio_model = float(input_height) / input_width | |
| if ratio_img > ratio_model: | |
| new_height = input_height | |
| new_width = int(new_height / ratio_img) | |
| else: | |
| new_width = input_width | |
| new_height = int(new_width * ratio_img) | |
| det_scale = float(new_height) / img_height | |
| resized_img = cv2.resize(img, (new_width, new_height)) | |
| det_img = np.zeros((input_size[1], input_size[0], 3), dtype=np.uint8) | |
| det_img[:new_height, :new_width, :] = resized_img | |
| scores_list, bboxes_list, kpss_list = self.forward(det_img, threshold) | |
| scores = np.vstack(scores_list) | |
| scores_ravel = scores.ravel() | |
| order = scores_ravel.argsort()[::-1] | |
| bboxes = np.vstack(bboxes_list) / det_scale | |
| if self._with_kps: | |
| kpss = np.vstack(kpss_list) / det_scale | |
| pre_det = np.hstack((bboxes, scores)).astype(np.float32, copy=False) | |
| pre_det = pre_det[order, :] | |
| keep = self._nms(pre_det) | |
| det = pre_det[keep, :] | |
| if self._with_kps: | |
| kpss = kpss[order, :, :] | |
| kpss = kpss[keep, :, :] | |
| else: | |
| kpss = None | |
| if max_num > 0 and det.shape[0] > max_num: | |
| area = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1]) | |
| img_center = img.shape[0] // 2, img.shape[1] // 2 | |
| offsets = np.vstack([ | |
| (det[:, 0] + det[:, 2]) / 2 - img_center[1], | |
| (det[:, 1] + det[:, 3]) / 2 - img_center[0]]) | |
| offset_dist_squared = np.sum(np.power(offsets, 2.0), 0) | |
| if metric == 'max': | |
| values = area | |
| else: | |
| # some extra weight on the centering | |
| values = area - offset_dist_squared * 2.0 | |
| # some extra weight on the centering | |
| bindex = np.argsort(values)[::-1] | |
| bindex = bindex[0:max_num] | |
| det = det[bindex, :] | |
| if kpss is not None: | |
| kpss = kpss[bindex, :] | |
| return det, kpss | |
| def visualize(self, image, results, box_color=(0, 255, 0), text_color=(0, 0, 0)): | |
| """Visualize the detection results. | |
| Args: | |
| image (np.ndarray): image to draw marks on. | |
| results (np.ndarray): face detection results. | |
| box_color (tuple, optional): color of the face box. Defaults to (0, 255, 0). | |
| text_color (tuple, optional): color of the face marks (5 points). Defaults to (0, 0, 255). | |
| """ | |
| for det in results: | |
| bbox = det[0:4].astype(np.int32) | |
| conf = det[-1] | |
| cv2.rectangle(image, (bbox[0], bbox[1]), | |
| (bbox[2], bbox[3]), box_color) | |
| label = f"face: {conf:.2f}" | |
| label_size, base_line = cv2.getTextSize( | |
| label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) | |
| cv2.rectangle(image, (bbox[0], bbox[1] - label_size[1]), | |
| (bbox[2], bbox[1] + base_line), box_color, cv2.FILLED) | |
| cv2.putText(image, label, (bbox[0], bbox[1]), | |
| cv2.FONT_HERSHEY_SIMPLEX, 0.5, text_color) | |