#!/usr/bin/env python import getopt import math import numpy import PIL import PIL.Image import sys import torch try: from .correlation import correlation # the custom cost volume layer except: sys.path.insert(0, './correlation'); import correlation # you should consider upgrading python # end ########################################################## assert(int(str('').join(torch.__version__.split('.')[0:2])) >= 13) # requires at least pytorch version 1.3.0 torch.set_grad_enabled(False) # make sure to not compute gradients for computational performance torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance ########################################################## arguments_strModel = 'default' # 'default', or 'kitti', or 'sintel' arguments_strOne = './images/one.png' arguments_strTwo = './images/two.png' arguments_strOut = './out.flo' for strOption, strArgument in getopt.getopt(sys.argv[1:], '', [ strParameter[2:] + '=' for strParameter in sys.argv[1::2] ])[0]: if strOption == '--model' and strArgument != '': arguments_strModel = strArgument # which model to use if strOption == '--one' and strArgument != '': arguments_strOne = strArgument # path to the first frame if strOption == '--two' and strArgument != '': arguments_strTwo = strArgument # path to the second frame if strOption == '--out' and strArgument != '': arguments_strOut = strArgument # path to where the output should be stored # end ########################################################## backwarp_tenGrid = {} def backwarp(tenInput, tenFlow): if str(tenFlow.shape) not in backwarp_tenGrid: tenHor = torch.linspace(-1.0 + (1.0 / tenFlow.shape[3]), 1.0 - (1.0 / tenFlow.shape[3]), tenFlow.shape[3]).view(1, 1, 1, -1).repeat(1, 1, tenFlow.shape[2], 1) tenVer = torch.linspace(-1.0 + (1.0 / tenFlow.shape[2]), 1.0 - (1.0 / tenFlow.shape[2]), tenFlow.shape[2]).view(1, 1, -1, 1).repeat(1, 1, 1, tenFlow.shape[3]) backwarp_tenGrid[str(tenFlow.shape)] = torch.cat([ tenHor, tenVer ], 1).cuda() # end tenFlow = torch.cat([ tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0), tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0) ], 1) return torch.nn.functional.grid_sample(input=tenInput, grid=(backwarp_tenGrid[str(tenFlow.shape)] + tenFlow).permute(0, 2, 3, 1), mode='bilinear', padding_mode='zeros', align_corners=False) # end ########################################################## class Network(torch.nn.Module): def __init__(self): super().__init__() class Features(torch.nn.Module): def __init__(self): super().__init__() self.netOne = torch.nn.Sequential( torch.nn.Conv2d(in_channels=3, out_channels=32, kernel_size=7, stride=1, padding=3), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.netTwo = torch.nn.Sequential( torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=2, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.netThr = torch.nn.Sequential( torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=2, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.netFou = torch.nn.Sequential( torch.nn.Conv2d(in_channels=64, out_channels=96, kernel_size=3, stride=2, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=96, out_channels=96, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.netFiv = torch.nn.Sequential( torch.nn.Conv2d(in_channels=96, out_channels=128, kernel_size=3, stride=2, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) self.netSix = torch.nn.Sequential( torch.nn.Conv2d(in_channels=128, out_channels=192, kernel_size=3, stride=2, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) # end def forward(self, tenInput): tenOne = self.netOne(tenInput) tenTwo = self.netTwo(tenOne) tenThr = self.netThr(tenTwo) tenFou = self.netFou(tenThr) tenFiv = self.netFiv(tenFou) tenSix = self.netSix(tenFiv) return [ tenOne, tenTwo, tenThr, tenFou, tenFiv, tenSix ] # end # end class Matching(torch.nn.Module): def __init__(self, intLevel): super().__init__() self.fltBackwarp = [ 0.0, 0.0, 10.0, 5.0, 2.5, 1.25, 0.625 ][intLevel] if intLevel != 2: self.netFeat = torch.nn.Sequential() elif intLevel == 2: self.netFeat = torch.nn.Sequential( torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=1, stride=1, padding=0), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) # end if intLevel == 6: self.netUpflow = None elif intLevel != 6: self.netUpflow = torch.nn.ConvTranspose2d(in_channels=2, out_channels=2, kernel_size=4, stride=2, padding=1, bias=False, groups=2) # end if intLevel >= 4: self.netUpcorr = None elif intLevel < 4: self.netUpcorr = torch.nn.ConvTranspose2d(in_channels=49, out_channels=49, kernel_size=4, stride=2, padding=1, bias=False, groups=49) # end self.netMain = torch.nn.Sequential( torch.nn.Conv2d(in_channels=49, out_channels=128, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=[ 0, 0, 7, 5, 5, 3, 3 ][intLevel], stride=1, padding=[ 0, 0, 3, 2, 2, 1, 1 ][intLevel]) ) # end def forward(self, tenOne, tenTwo, tenFeaturesOne, tenFeaturesTwo, tenFlow): tenFeaturesOne = self.netFeat(tenFeaturesOne) tenFeaturesTwo = self.netFeat(tenFeaturesTwo) if tenFlow is not None: tenFlow = self.netUpflow(tenFlow) # end if tenFlow is not None: tenFeaturesTwo = backwarp(tenInput=tenFeaturesTwo, tenFlow=tenFlow * self.fltBackwarp) # end if self.netUpcorr is None: tenCorrelation = torch.nn.functional.leaky_relu(input=correlation.FunctionCorrelation(tenOne=tenFeaturesOne, tenTwo=tenFeaturesTwo, intStride=1), negative_slope=0.1, inplace=False) elif self.netUpcorr is not None: tenCorrelation = self.netUpcorr(torch.nn.functional.leaky_relu(input=correlation.FunctionCorrelation(tenOne=tenFeaturesOne, tenTwo=tenFeaturesTwo, intStride=2), negative_slope=0.1, inplace=False)) # end return (tenFlow if tenFlow is not None else 0.0) + self.netMain(tenCorrelation) # end # end class Subpixel(torch.nn.Module): def __init__(self, intLevel): super().__init__() self.fltBackward = [ 0.0, 0.0, 10.0, 5.0, 2.5, 1.25, 0.625 ][intLevel] if intLevel != 2: self.netFeat = torch.nn.Sequential() elif intLevel == 2: self.netFeat = torch.nn.Sequential( torch.nn.Conv2d(in_channels=32, out_channels=64, kernel_size=1, stride=1, padding=0), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) # end self.netMain = torch.nn.Sequential( torch.nn.Conv2d(in_channels=[ 0, 0, 130, 130, 194, 258, 386 ][intLevel], out_channels=128, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=[ 0, 0, 7, 5, 5, 3, 3 ][intLevel], stride=1, padding=[ 0, 0, 3, 2, 2, 1, 1 ][intLevel]) ) # end def forward(self, tenOne, tenTwo, tenFeaturesOne, tenFeaturesTwo, tenFlow): tenFeaturesOne = self.netFeat(tenFeaturesOne) tenFeaturesTwo = self.netFeat(tenFeaturesTwo) if tenFlow is not None: tenFeaturesTwo = backwarp(tenInput=tenFeaturesTwo, tenFlow=tenFlow * self.fltBackward) # end return (tenFlow if tenFlow is not None else 0.0) + self.netMain(torch.cat([ tenFeaturesOne, tenFeaturesTwo, tenFlow ], 1)) # end # end class Regularization(torch.nn.Module): def __init__(self, intLevel): super().__init__() self.fltBackward = [ 0.0, 0.0, 10.0, 5.0, 2.5, 1.25, 0.625 ][intLevel] self.intUnfold = [ 0, 0, 7, 5, 5, 3, 3 ][intLevel] if intLevel >= 5: self.netFeat = torch.nn.Sequential() elif intLevel < 5: self.netFeat = torch.nn.Sequential( torch.nn.Conv2d(in_channels=[ 0, 0, 32, 64, 96, 128, 192 ][intLevel], out_channels=128, kernel_size=1, stride=1, padding=0), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) # end self.netMain = torch.nn.Sequential( torch.nn.Conv2d(in_channels=[ 0, 0, 131, 131, 131, 131, 195 ][intLevel], out_channels=128, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), torch.nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding=1), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1) ) if intLevel >= 5: self.netDist = torch.nn.Sequential( torch.nn.Conv2d(in_channels=32, out_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], kernel_size=[ 0, 0, 7, 5, 5, 3, 3 ][intLevel], stride=1, padding=[ 0, 0, 3, 2, 2, 1, 1 ][intLevel]) ) elif intLevel < 5: self.netDist = torch.nn.Sequential( torch.nn.Conv2d(in_channels=32, out_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], kernel_size=([ 0, 0, 7, 5, 5, 3, 3 ][intLevel], 1), stride=1, padding=([ 0, 0, 3, 2, 2, 1, 1 ][intLevel], 0)), torch.nn.Conv2d(in_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], out_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], kernel_size=(1, [ 0, 0, 7, 5, 5, 3, 3 ][intLevel]), stride=1, padding=(0, [ 0, 0, 3, 2, 2, 1, 1 ][intLevel])) ) # end self.netScaleX = torch.nn.Conv2d(in_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], out_channels=1, kernel_size=1, stride=1, padding=0) self.netScaleY = torch.nn.Conv2d(in_channels=[ 0, 0, 49, 25, 25, 9, 9 ][intLevel], out_channels=1, kernel_size=1, stride=1, padding=0) # eny def forward(self, tenOne, tenTwo, tenFeaturesOne, tenFeaturesTwo, tenFlow): tenDifference = ((tenOne - backwarp(tenInput=tenTwo, tenFlow=tenFlow * self.fltBackward)) ** 2).sum(1, True).sqrt().detach() tenDist = self.netDist(self.netMain(torch.cat([ tenDifference, tenFlow - tenFlow.view(tenFlow.shape[0], 2, -1).mean(2, True).view(tenFlow.shape[0], 2, 1, 1), self.netFeat(tenFeaturesOne) ], 1))) tenDist = (tenDist ** 2).neg() tenDist = (tenDist - tenDist.max(1, True)[0]).exp() tenDivisor = tenDist.sum(1, True).reciprocal() tenScaleX = self.netScaleX(tenDist * torch.nn.functional.unfold(input=tenFlow[:, 0:1, :, :], kernel_size=self.intUnfold, stride=1, padding=int((self.intUnfold - 1) / 2)).view_as(tenDist)) * tenDivisor tenScaleY = self.netScaleY(tenDist * torch.nn.functional.unfold(input=tenFlow[:, 1:2, :, :], kernel_size=self.intUnfold, stride=1, padding=int((self.intUnfold - 1) / 2)).view_as(tenDist)) * tenDivisor return torch.cat([ tenScaleX, tenScaleY ], 1) # end # end self.netFeatures = Features() self.netMatching = torch.nn.ModuleList([ Matching(intLevel) for intLevel in [ 2, 3, 4, 5, 6 ] ]) self.netSubpixel = torch.nn.ModuleList([ Subpixel(intLevel) for intLevel in [ 2, 3, 4, 5, 6 ] ]) self.netRegularization = torch.nn.ModuleList([ Regularization(intLevel) for intLevel in [ 2, 3, 4, 5, 6 ] ]) self.load_state_dict({ strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.hub.load_state_dict_from_url(url='http://content.sniklaus.com/github/pytorch-liteflownet/network-' + arguments_strModel + '.pytorch').items() }) # self.load_state_dict(torch.load('./liteflownet/network-default.pth')) # end def forward(self, tenOne, tenTwo): tenOne[:, 0, :, :] = tenOne[:, 0, :, :] - 0.411618 tenOne[:, 1, :, :] = tenOne[:, 1, :, :] - 0.434631 tenOne[:, 2, :, :] = tenOne[:, 2, :, :] - 0.454253 tenTwo[:, 0, :, :] = tenTwo[:, 0, :, :] - 0.410782 tenTwo[:, 1, :, :] = tenTwo[:, 1, :, :] - 0.433645 tenTwo[:, 2, :, :] = tenTwo[:, 2, :, :] - 0.452793 tenFeaturesOne = self.netFeatures(tenOne) tenFeaturesTwo = self.netFeatures(tenTwo) tenOne = [ tenOne ] tenTwo = [ tenTwo ] for intLevel in [ 1, 2, 3, 4, 5 ]: tenOne.append(torch.nn.functional.interpolate(input=tenOne[-1], size=(tenFeaturesOne[intLevel].shape[2], tenFeaturesOne[intLevel].shape[3]), mode='bilinear', align_corners=False)) tenTwo.append(torch.nn.functional.interpolate(input=tenTwo[-1], size=(tenFeaturesTwo[intLevel].shape[2], tenFeaturesTwo[intLevel].shape[3]), mode='bilinear', align_corners=False)) # end tenFlow = None for intLevel in [ -1, -2, -3, -4, -5 ]: tenFlow = self.netMatching[intLevel](tenOne[intLevel], tenTwo[intLevel], tenFeaturesOne[intLevel], tenFeaturesTwo[intLevel], tenFlow) tenFlow = self.netSubpixel[intLevel](tenOne[intLevel], tenTwo[intLevel], tenFeaturesOne[intLevel], tenFeaturesTwo[intLevel], tenFlow) tenFlow = self.netRegularization[intLevel](tenOne[intLevel], tenTwo[intLevel], tenFeaturesOne[intLevel], tenFeaturesTwo[intLevel], tenFlow) # end return tenFlow * 20.0 # end # end netNetwork = None ########################################################## def estimate(tenOne, tenTwo): global netNetwork if netNetwork is None: netNetwork = Network().cuda().eval() # end assert(tenOne.shape[1] == tenTwo.shape[1]) assert(tenOne.shape[2] == tenTwo.shape[2]) intWidth = tenOne.shape[2] intHeight = tenOne.shape[1] # assert(intWidth == 1024) # remember that there is no guarantee for correctness, comment this line out if you acknowledge this and want to continue # assert(intHeight == 436) # remember that there is no guarantee for correctness, comment this line out if you acknowledge this and want to continue tenPreprocessedOne = tenOne.cuda().view(1, 3, intHeight, intWidth) tenPreprocessedTwo = tenTwo.cuda().view(1, 3, intHeight, intWidth) intPreprocessedWidth = int(math.floor(math.ceil(intWidth / 32.0) * 32.0)) intPreprocessedHeight = int(math.floor(math.ceil(intHeight / 32.0) * 32.0)) tenPreprocessedOne = torch.nn.functional.interpolate(input=tenPreprocessedOne, size=(intPreprocessedHeight, intPreprocessedWidth), mode='bilinear', align_corners=False) tenPreprocessedTwo = torch.nn.functional.interpolate(input=tenPreprocessedTwo, size=(intPreprocessedHeight, intPreprocessedWidth), mode='bilinear', align_corners=False) tenFlow = torch.nn.functional.interpolate(input=netNetwork(tenPreprocessedOne, tenPreprocessedTwo), size=(intHeight, intWidth), mode='bilinear', align_corners=False) tenFlow[:, 0, :, :] *= float(intWidth) / float(intPreprocessedWidth) tenFlow[:, 1, :, :] *= float(intHeight) / float(intPreprocessedHeight) return tenFlow[0, :, :, :].cpu() # end ########################################################## if __name__ == '__main__': tenOne = torch.FloatTensor(numpy.ascontiguousarray(numpy.array(PIL.Image.open(arguments_strOne))[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) * (1.0 / 255.0))) tenTwo = torch.FloatTensor(numpy.ascontiguousarray(numpy.array(PIL.Image.open(arguments_strTwo))[:, :, ::-1].transpose(2, 0, 1).astype(numpy.float32) * (1.0 / 255.0))) tenOutput = estimate(tenOne, tenTwo) objOutput = open(arguments_strOut, 'wb') numpy.array([ 80, 73, 69, 72 ], numpy.uint8).tofile(objOutput) numpy.array([ tenOutput.shape[2], tenOutput.shape[1] ], numpy.int32).tofile(objOutput) numpy.array(tenOutput.numpy().transpose(1, 2, 0), numpy.float32).tofile(objOutput) objOutput.close() # end